scholarly journals Effects of Biochar on Nutrient Leaching and Begonia Plant Growth1

2018 ◽  
Vol 36 (4) ◽  
pp. 126-132
Author(s):  
Elizabeth F. Crutchfield ◽  
Milton E. McGiffen ◽  
Donald J. Merhaut

Abstract Biochar is a highly adsorptive carbon substrate. A study was conducted to determine the ability of biochar to reduce fertilizer runoff from nurseries. Potting mix was augmented with biochar at different rates, ranging from 0% to 30% by volume, with some treatments planted with Begonia x semperflorens-cultorum hort. ‘Viva.' The pots were fertilized with a modified Hoagland solution and watered four times a week. The leachate was collected from each pot after watering and aggregated into weekly samples. Leachate from each week was analyzed photometrically for nitrate, ammonium and ortho-phosphate concentrations. Leaching of all three ions was reduced in the biochar-amended treatments. Biochar did not affect plant growth, nitrogen or phosphorus content of the plant material. Index words: Ammonium nitrate, phosphate, biochar, begonia, Begonia x semperflorens-cultorum hort. ‘Viva,' media, container production Species used: Begonia x semperflorens-cultorum hort. ‘Viva'

Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 501 ◽  
Author(s):  
Sally Logsdon

1974 ◽  
Vol 54 (3) ◽  
pp. 255-263 ◽  
Author(s):  
L. D. BAILEY

Continuous cropping of eight Manitoba soils to alfalfa in the greenhouse decreased the exchangeable potassium of the soils to low equilibrium levels. Non-exchangeable potassium was removed from the soils by the alfalfa. The rate of decrease of exchangeable potassium and the quantity of non-exchangeable potassium mobilized was significantly influenced by the addition of ammonium nitrate or urea to the soils. However, there were no significant differences between the soils treated with ammonium nitrate and those treated with urea. There was considerable variation among soils in the rate of decrease of exchangeable potassium and the quantity of non-exchangeable potassium mobilized. The total yield of soil potassium was related to the initial exchangeable potassium levels of the soils. Addition of NH4NO3 increased the percentage of total N in the plant material harvested prior to the eighth harvest. After this eighth harvest the added nitrogen had no effect on the nitrogen content of the harvested material. In general, fine-textured soils yielded more plant material and total potassium, and maintained a higher level of exchangeable potassium than coarse-textured soils.


1999 ◽  
Vol 50 (2) ◽  
pp. 217 ◽  
Author(s):  
D. O. Huett ◽  
S. C. Morris

Nutrient leaching loss, plant growth, and nutrient uptake of 4-week (transplanting to sale) ground-cover species were investigated under a range of leaching conditions and with different sources of a controlled- release fertiliser (CRF), Osmocote NPK (3–4 month) (Osm). Osm was applied pre-planting at a rate equivalent to 800 g N/m3 to pots containing sand, and composted pinebark and hardwood sawdust medium that had received nutrient amendment during formulation. Two experiments were conducted in a glasshouse over summer–autumn where irrigation treatments produced defined leachate volumes. In Expt 1, leachate volumes of <5, 50, and 200 mL every 2 days each received an additional single heavy leaching event of 400 mL after 1, 2, or 3 weeks. In Expt 2, the 3 leachate volumes were each fertilised with new Osm (a newly purchased Osm) or old Osm (a 2-year-old source), where both of these sources contained 0.5–1.5% visibly damaged prills; and damaged Osm, where damaged prills were used exclusively. In both experiments, increasing leachate volume increased (P < 0.001) leaching of N (nitrate + ammonium), P, K, Ca, and Mg. In Expt 1, leaching was highest (P < 0.01) when the heavy leaching event occurred after 2 or 3 weeks for N and after 2 weeks for P. When damaged Osm was used, N, P, and K loss was 3–15 times higher (P < 0.001) than from new and old Osm (98.5–99.5% undamaged). The highest leaching loss of N, P, K, Ca, and Mg occurred in the first week after potting up, with damaged prills at highest leaching volume. Increasing leachate volume (in the presence of a heavy leaching event) reduced (P < 0.001) electrical conductivity (EC) of potting medium after 4 weeks from 1.02 to 0.54 dS/m. Damaged prills reduced (P < 0.001) EC at the high leachate volume in relation to new Osm (2.38 v. 0.29 dS/m). Treatments that increased (P < 0.05) nutrient leaching generally reduced (P < 0.05) nutrient concentrations in shoots and depressed the growth of some plant species. Shoot growth of 2 of 5 species was reduced (P < 0.001) at the highest leachate volume with an additional heavy leaching event in Week 1 or 2, and root growth of all but the slowest growing species declined with increasing leachate volume. Damaged prills reduced (P < 0.001) shoot growth of 2 of the 5 ground-cover species. This study demonstrated that excessive leaching and the use of damaged prills for containerised nursery plants fertilised with CRF results in high nutrient loss, low residual nutrient content, reduced nutrient uptake in shoots, and reduced shoot growth of some species.


2017 ◽  
Vol 2 (01) ◽  
pp. 24-27
Author(s):  
Reena Tomer ◽  
S. P. Singh ◽  
Varun Tomer ◽  
Mahesh Kumar ◽  
Nidhi Sharma

In the laboratory seedling were induced with nodule-like outgrowths using different growth regulators 2,4-D,IBA and NAA in nitrogen free Hoagland solution. Induced seedlings were inoculated with Azorhizobium caulinodans (ORS 571) in wheat variety C-306. One set was also raised as control. The treated paranoulated wheat seedlings were transferred to pot culture. The data was collected on 30, 60 and 90 days after sowing, which reveals that as a Azorhizobium caulinodans with 2,4-D treated plants shows maximum photosynthetic rate followed by NAA and IBA combinations. The biomass production was maximum in Azorhizobium caulinodans treated with 2,4-D followed by IBA and NAA.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 600e-601
Author(s):  
Matthew D. Kleinhenz ◽  
Jiwan P. Palta

Micropropagated `Red Norland' plants were transferred to an inert mixture of 1 perlite: 1 medium-grain quartzite (v/v) and grown 21 days at 20°C day/15°C night on a 25% Hoagland solution without Ca(NO3)2 (Ca at 10 mg·L–1 from CaCl2, N at 35 mg·L–1 from KNO3). Thereafter, Ca treatments (Ca at 0.2, 1, 5, 25, 125 mg·L–1) were imposed for 21 days with other nutrients unchanged. Day/night temperatures were 20/15°C and 35/20°C for control and stress plants, respectively. Continuous drip supply of nutrient solution in excess of demand maintained target rhizospheric Ca levels. All experiments were conducted in controlled-environment chambers with 400-μmol·m–2·s–1 light level. The following results were obtained. 1) Stress, but not control, plants grown with Ca at 0.2 and 1.0 mg·L–1 displayed reduced leaf expansion, extreme senescence, and death of the primary shoot meristem. 2) Plants grown with Ca at 5, 25 and 125 mg·L–1 grew normally under both temperature regimens, although plants responded to temperature with different biomass partitioning. (3) Total root mass at harvest was similar under all Ca–temperature combinations but low-Ca-treated plants had comparatively darker roots with fewer branches. (4) Light microscopic evaluation revealed normal staining patterns of lignified elements in leaves and stems of all plants. These data suggest that constant rhizospheric Ca levels >1 mg·L–1 are required for continued plant growth during exposure to heat stress.


2021 ◽  
pp. 207-211
Author(s):  
Szabina Simon ◽  
Brigitta Simon ◽  
Angéla Anda

The different nitrogen and phosphorus elements are prime constituents of the ecosystem and can exert a major effect on aquatic species and the overall ecological cycle. During our investigation we examined the nutrient leaching dynamics in decomposing leaf litter (stem and leaf blades) of Solidago virgaurea. We chose four different sampling sites during the winter period with different water temperatures in the Hévíz Lake and Hévíz canal. The bottles containing the plant material and water were incubated at natural temperatures and the fluid was removed at particular times. Water parameters such as pH level, conductivity, nutrients (ammonium and phosphates) were measured. In the case of Solidago leaf, we obtained higher values ​​for all parameters compared to the stem ones.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 156 ◽  
Author(s):  
Ping Yu ◽  
Lan Huang ◽  
Qiansheng Li ◽  
Isabel M. Lima ◽  
Paul M. White ◽  
...  

Biochar (BC) has the potential to replace bark-based commercial substrates in the production of container plants. A greenhouse experiment was conducted to evaluate the potential of mixed hardwood biochar (HB) and sugarcane bagasse biochar (SBB) to replace the bark-based commercial substrate. A bark-based commercial substrate was incorporated with either HB at 50% (vol.) or SBB at 50% and 70% (vol.), with a bark-based commercial substrate being used as the control. The total porosity (TP) and container capacity (CC) of all SBB-incorporated mixes were slightly higher than the recommended value, while, the others were within the recommended range. Both tomato and basil plants grown in the BC-incorporated mixes had a similar or higher growth index (GI), leaf greenness (indicated by soil-plant analyses development), and yield than the control. The leachate of all mixes had the highest NO3–N concentration in the first week after transplantation (1 WAT). All BC-incorporated mixes grown with both tomato and basil had similar NO3–N concentration to the control (except 50% SBB at 1 and 5 WAT, and 50% HB at 5 WAT with tomato plants; 50% SBB at 5 WAT with basil plants). In conclusion, HB could replace bark-based substrates at 50% and SBB at 70% for both tomato and basil plant growth, without negative effects.


2009 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
A. K. Hagan ◽  
J. R. Akridge ◽  
K. L. Bowen

The impact of N rate on development of Cercospora leaf spot on field grown ‘Carolina Beauty’ crapemyrtle and the impact of this disease, as well as N rate, on plant growth was assessed in Alabama. From 2002 to 2005, ammonium nitrate was applied at an N rate of 2, 4.1, 8.3, 16.5, 33.0, and 66.0 g/m2. Heritage 50W fungicide was applied to one tree in each plot, while the second tree was not treated. Powdery mildew was very sporadic and was not related to N rate. An N rate-related reduction in Cercospora leaf spot intensity and defoliation was noted on the non-fungicide and fungicide treated trees in 2005 but not in 2003 and 2004. In 2005, reductions in disease intensity and defoliation were obtained at the three highest N rates of 16.5, 33, and 66 g/m2 compared to the two lowest N rates of 2 and 4.1 g/m2. Regardless of N rate, Heritage 50W suppressed Cercospora leaf spot. Despite considerable leaf spotting and premature defoliation, Cercospora leaf spot did not impact crapemyrtle growth. Increasing N rates was less effective than Heritage 50W fungicide in controlling Cercospora leaf spot and also failed to enhance tree growth. Accepted for publication 10 September 2009. Published 14 December 2009.


2016 ◽  
Vol 24 (4) ◽  
pp. 238-245 ◽  
Author(s):  
S. D. Logsdon ◽  
P. A. Sauer

2014 ◽  
Vol 58 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Stanisław Flasiński ◽  
Ryszard Zamorski ◽  
Urszula Kotowska

Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI) by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP) activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.


Sign in / Sign up

Export Citation Format

Share Document