scholarly journals Irrigation quality and management determine salinization in Israeli olive orchards

2022 ◽  
Vol 15 (1) ◽  
pp. 129-143
Author(s):  
Vladimir Mirlas ◽  
Yaakov Anker ◽  
Asher Aizenkod ◽  
Naftali Goldshleger

Abstract. Olive (Olea europaea L.) orchard brackish water irrigation with incorrect irrigation management reduces soil fertility and degrades soil health through soil salinization. This study was conducted in the Beit She'an Valley, one of the main agricultural regions in Israel, in an olive orchard in which a combination of soil salinization and poor drainage conditions impedes plant development and causes severe economic damage. By combining various research methods, including soil salinity monitoring, field experiments, remote sensing (frequency domain electromagnetic – FDEM), and unsaturated soil profile saline water movement modeling, the salinization processes were quantified. Irrigation water conductance of 3.13 dS m−1 points to salinization within the tree upper root zone, whereas the modeling results suggest that salinization danger is greater with brackish treated wastewater rather than with lower-salinity brackish irrigation groundwater and that irrigation with potable water can help reduce salt accumulation and recover damaged plots.

2020 ◽  
Author(s):  
Vladimir Mirlas ◽  
Yaakov Anker ◽  
Asher Aizenkod ◽  
Naftali Goldshleger

Abstract. Salinization causes soil degradation and soil fertility reduction. The main reasons for soil salinization are poor irrigation water quality and incorrect irrigation management. Soil salinization is accelerated owing to irrigation with treated wastewater with elevated salt concentration. The study area is located in the Beit She'an Valley, one of the most important agricultural regions in Israel. The combination of soil salinization and poor drainage conditions impedes plant development and is manifested in economic damage to crops. Without clear irrigation criteria, an increase in soil salinity and steady damage to soil fertility might occur. The study objective was to provide an assessment of soil salting processes as a result of low-quality irrigation water at the Kibbutz Meirav olive plantation. This study combined various research methods, including soil salinity monitoring, field experiments, remote sensing (FDEM), and unsaturated soil profile saline water movement modeling. The assessment included the salinization processes of chalky soil under drip irrigation by water with various qualities. With a drip irrigation regime of water with a dissolved salt content of 3.13 dS/m, the salinization process is characterized by salts accumulation in the upper root zone of the trees. The modeling results showed that there is a soil salinization danger in using brackish water and that irrigation with potable water helps to reduce soil salinization.


2013 ◽  
Vol 726-731 ◽  
pp. 3035-3039 ◽  
Author(s):  
Xue Bin Qi ◽  
Zong Dong Huang ◽  
Dong Mei Qiao ◽  
Ping Li ◽  
Zhi Juan Zhao ◽  
...  

Agriculture is a big consumer of fresh water in competition with other sectors of the society. The agricultural sector continues to have a negative impact on the ecological status of the environment. The worlds interest in high quality food is increasing. Field experiments were conducted to investigate the effect of subsurface drip irrigation on physiological responses, yield and water use efficiency, Soil nitrogen, Root weight density of potato in the semi-humid region of middle China using subsurface drip irrigation. The experiment used second-stage treated wastewater with and without addition of chloride, and both subsurface drip and furrow irrigations were investigated. Results indicated that the alternate partial root-zone irrigation is a practicable water-saving strategy for potato. The drip with chlorinated and non-chlorinated water improved water use efficiency by 21.48% and 39.1%, respectively, and 44.1% in the furrow irrigation. Partial root zone drying irrigation stimulates potato root growth and enhances root density. The content of the heavy metal in the potato tubers is no more than the National Food Requirements, and it is consistent with National Food Hygiene Stands.


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
František Doležal ◽  
David Zumr ◽  
Josef Vacek ◽  
Josef Zavadil ◽  
Adriano Battilani ◽  
...  

AbstractWater movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland made it possible to derive improved estimates of some parameters for the dual permeability model S1D_DUAL. A reasonably good agreement between the measured and the estimated soil hydraulic properties was obtained. The measured root zone depths were near to those obtained by inverse simulation with S1D _DUAL and to a boundary curve approximation. The measured and S1D _DUAL-simulated soil water pressure heads were comparable with those achieved by simulations with the Daisy model. During dry spells, the measured pressure heads tended to be higher than the simulated ones. In general, the former oscillated between the simulated values for soil matrix and those for the preferential flow (PF) domain. Irrigation facilitated deep seepage after rain events. We conclude that several parallel soil moisture sensors are needed for adequate irrigation control. The sensors cannot detect the time when the irrigation should be stopped.


Author(s):  
Pichu Rengasamy

Salt accumulation in soils, affecting agricultural productivity, environmental health, and the economy of the community, is a global phenomenon since the decline of ancient Mesopotamian civilization by salinity. The global distribution of salt-affected soils is estimated to be around 830 million hectares extending over all the continents, including Africa, Asia, Australasia, and the Americas. The concentration and composition of salts depend on several resources and processes of salt accumulation in soil layers. Major types of soil salinization include groundwater associated salinity, non–groundwater-associated salinity, and irrigation-induced salinity. There are several soil processes which lead to salt build-up in the root zone interfering with the growth and physiological functions of plants. Salts, depending on the ionic composition and concentration, can also affect many soil processes, such as soil water dynamics, soil structural stability, solubility of essential nutrients, and pH and pE of soil water—all indirectly hindering plant growth. The direct effect of salinity includes the osmotic effect affecting water and nutrient uptake and the toxicity or deficiency due to high concentration of certain ions. The plan of action to resolve the problems associated with soil salinization should focus on prevention of salt accumulation, removal of accumulated salts, and adaptation to a saline environment. Successful utilization of salinized soils needs appropriate soil and irrigation management and improvement of plants by breeding and genetic engineering techniques to tolerate different levels of salinity and associated abiotic stress.


EDIS ◽  
1969 ◽  
Vol 2005 (3) ◽  
Author(s):  
Eric H. Simonne ◽  
David W. Studstill ◽  
Robert C. Hochmuth ◽  
J. T. Jones ◽  
C. W. Starling

The goals of this project were to demonstrate to cooperating growers how irrigation and fertilizer management are linked together and how management may prevent water movement below the root zone. More specifically, the objectives were to: establish partnerships with three key growers and discuss fertilizer and irrigation management, determine the position of the water front throughout the growing season, diagnose crop nutritional status, and determine nitrate distribution in the soil profile at the end of the growing season. This document is HS1008, one of a series of the Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: March 2005.


EDIS ◽  
1969 ◽  
Vol 2004 (10) ◽  
Author(s):  
Eric Simonne ◽  
David Studstill ◽  
Michael Dukes ◽  
John Duval ◽  
Robert Hochmuth ◽  
...  

Improving irrigation management in vegetable crop production reduces production costs, saves water, and reduces the risk of nutrient leaching. As water movement in the root zone below mulched beds is difficult to see, injecting soluble dye through the drip irrigation system provides a simple and practical method to visualize water movement in the soil. Understanding water movement in raised beds is essential for improving irrigation scheduling and nutrient delivery. This document is HS980 one of a series of the Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: July 2004. HS980/HS222: How to Conduct an On-Farm Dye Test and Use the Results to Improve Drip Irrigation Management in Vegetable Production (ufl.edu)


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1072D-1073
Author(s):  
Eric Simonne ◽  
David Studstill ◽  
Robert Hochmuth ◽  
Justin Jones ◽  
Cynthia Stewart

The Federal Clear Water Act and Florida legislation have mandated the clean-up of impaired water bodies. The BMP manual for vegetable crops lists the cultural practices that could maintain productivity while minimizing environmental impact. BMPs focus on increased fertilizer and irrigation efficiency, but growers must be involved in the demonstration and adoption process if this voluntary program is to be successful. Three commercial vegetable fields from farms recognized as leaders in fertilizer and irrigation management were selected to demonstrate how irrigation and fertilizer management are linked together and how management may prevent water movement below the root zone of melons grown with plasticulture. In Spring 2004, dye (Brilliant blue FCF) was injected into the irrigation water three times during the growing season and soil profiles were dug to determine the depth of dye movement. Similar results were found at all three locations as the dye moved below at an average rate of 1.9 to 3.6 cm per day. Water movement was greater early in the season as irrigation was applied for transplant establishment. These results suggest that some leaching is likely to occur on light-textured soils, even when sophisticated irrigation and fertilization practices are followed. Based on these observations, cooperators spontaneously proposed to use two drip tapes, reduce preplant fertilizer, use a 100% injected N/K program, and/or add organic matter to the soil as attempts to slow water movement below the root zone of their crops. This project shows that growers are more likely to try and adopt sustainable practices when they actively participate in the educational process than when production changes are mandated through legislation.


2019 ◽  
Vol 99 (4) ◽  
pp. 380-394
Author(s):  
Arafat Alkhasha ◽  
Abdulrasoul Al-Omran ◽  
Ibrahim Louki

The aim of this study is to investigate impact of soil amendments (4% biochar, 0.4% polymer, and a combination of them) on soil moisture and salinity distribution, tomato yield, and water-use efficiency (WUE). Open-field experiments were conducted during two successive growing seasons in 2017 and 2018. The experiment consisted of three levels of irrigation treatments: 100%, 80%, and 60% of crop evapotranspiration (ETc); and two different water qualities: fresh 0.9 dS m−1 and saline electrical conductivity 3.6 dS m−1. Results revealed that at 100% of ETc, soil water distribution increased by 12.94%, 37.87%, and 42.21% at depths 0–15, 15–30, and 30–45 cm, with the addition of biochar, respectively, compared with control at same depths under freshwater, but the addition of polymer was increased by 6.35%, 16.56%, and 16.37%, respectively. While combination treatments increased by 15.70%, 24.80%, and 41.26%, at the depths aforementioned. Salt concentration was increased by 59.10% with biochar, whereas decreasing by 7.19% and 57.63% with polymer and mixture treatments, respectively. The results also showed that biochar and mixture treatments improved yield compared with the polymer and control, whereas saline water decreased the yield compared with freshwater. With deficit irrigation, WUE was increased by 28.54%, 40.98%, and 68.93% at 100%, 80%, and 60% of ETc, respectively, indicating it could be used as an irrigation management strategy under arid and semiarid field conditions.


Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 31
Author(s):  
Prudentia Zikalala ◽  
Isaya Kisekka ◽  
Mark Grismer

Treated wastewater irrigation began two decades ago in the Salinas Valley of California and provides a unique opportunity to evaluate the long-term effects of this strategy on soil salinization. We used data from a long-term field experiment that included application of a range of blended water salinity on vegetables, strawberries and artichoke crops using surface and pressurized irrigation systems to calibrate and validate a root zone salinity model. We first applied the method of Morris to screen model parameters that have negligible influence on the output (soil‐water electrical conductivity (ECsw)), and then the variance-based method of Sobol to select parameter values and complete model calibration and validation. While model simulations successfully captured long-term trends in soil salinity, model predictions underestimated ECsw for high ECsw samples. The model prediction error for the validation case ranged from 2.6% to 39%. The degree of soil salinization due to continuous application of water with electrical conductivity (ECw) of 0.57 dS/m to 1.76 dS/m depends on multiple factors; ECw and actual crop evapotranspiration had a positive effect on ECsw, while rainfall amounts and fallow had a negative effect. A 50-year simulation indicated that soil water equilibrium (ECsw ≤ 2dS/m, the initial ECsw) was reached after 8 to 14 years for vegetable crops irrigated with ECw of 0.95 to 1.76. Annual salt output loads for the 50-year simulation with runoff was a magnitude greater (from 305 to 1028 kg/ha/year) than that in deep percolation (up to 64 kg/ha/year). However, for all sites throughout the 50-year simulation, seasonal root zone salinity (saturated paste extract) did not exceed thresholds for salt tolerance for the selected crop rotations for the range of blended applied water salinities.


2015 ◽  
Vol 66 (10) ◽  
pp. 993 ◽  
Author(s):  
Attila Yazar ◽  
Çigdem Incekaya ◽  
S. Metin Sezen ◽  
Sven-Erik Jacobsen

Field experiments were set up in order to evaluate the yield response of quinoa (Chenopodium quinoa Willd. cv. Titicaca) to irrigation with saline and fresh water under Mediterranean climate from 2010 to 2012 in Adana, Turkey. Irrigation treatments in 2010 and 2011 comprised full irrigation with fresh water, full irrigation with saline water of different salt concentrations (40, 30, 20, 10 dS m–1), deficit irrigations with fresh water (50%, 75% of full irrigation), partial root-zone drying, and deficit irrigation with saline water of 40 dS m–1 (50%). In 2012, in addition to the full irrigation treatments, two deficit irrigation levels of 67% and 33% of full irrigation with fresh or saline (30, 20, 10 dS m–1) water were considered. The results indicated that grain yields were slightly reduced by irrigation water salinity up to 30 dS m–1 compared with fresh water irrigation. Salinity and drought stress together interfered considerably with crop grain and biomass yields. However, salinity stress alone did not interfere with grain and biomass yield significantly; therefore, quinoa may be defined as a crop tolerant to salinity. Yield parameters such as aboveground biomass, seed yield and harvest index suggested a good adaptation of quinoa cv. Titicaca to Mediterranean environments.


Sign in / Sign up

Export Citation Format

Share Document