Emerging Techniques in Measuring Capillary Pressure and Permeability Using NMR and AI

2021 ◽  
Author(s):  
Ahmed Ghamdi ◽  
Abubakar Isah ◽  
Mahmoud Elsayed ◽  
Kareem Garadi ◽  
Abdulazeez Abdulraheem

Abstract Measurement of Special Core Analysis (SCAL) parameters is a costly and time-intensive process. Some of the disadvantages of the current techniques are that they are not performed in-situ, and can destroy the core plugs, e.g., mercury injection capillary pressure (MICP). The objective of this paper is to introduce and investigate the emerging techniques in measuring SCAL parameters using Nuclear Magnetic Resonance (NMR) and Artificial Intelligence (Al). The conventional methods for measuring SCAL parameters are well understood and are an industry standard. Yet, NMR and Al - which are revolutionizing the way petroleum engineers and scientists describe rock/fluid properties - have yet to be utilized to their full potential in reservoir description. In addition, integration of the two tools will open a greater opportunity in the field of reservoir description, where measurement of in-situ SCAL parameters could be achieved. This paper shows the results of NMR lab experiments and Al analytics for measuring capillary pressures and permeability. The data set was divided into 70% for training and 30% for validation. Artificial Neural Network (ANN) was used and the developed model compared well with the permeability and capillary pressure data measured from the conventional methods. Specifically, the model predicted permeability 10% error. Similarly, for the capillary pressures, the model was able to achieve an excellent match. This active research area of prediction of capillary pressure, permeability and other rock properties is a promising emerging technique that capitalizes on NMR/AI analytics. There is significant potential is being able to evaluate wettability in-situ. Core-plugs undergoing Amott-Harvey experiment with NMR measurements in the process can be used as a building block for an NMR/AI wettability determination technique. This potential aspect of NMR/AI analytics can have significant implications on field development and EOR projects The developed NMR-Al model is an excellent start to measure permeability and capillary pressure in-situ. This novel approach coupled with ongoing research for better handling of in-situ wettability measurement will provide the industry with enormous insight into the in-situ SCAL measurements which are currently considered as an elusive measurement with no robust logging technique to evaluate them in-situ.

2016 ◽  
Author(s):  
Jitendra Kumar ◽  
Forrest M. Hoffman ◽  
William W. Hargrove ◽  
Nathan Collier

Abstract. Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results provide quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. This study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network. Data from this study are available at http://dx.doi.org/10.15486/NGT/1279968


2005 ◽  
Vol 45 (1) ◽  
pp. 77
Author(s):  
Z.J. Pallikathekathil ◽  
J.R. Marsden ◽  
R.J. Suttill ◽  
M. Mussared ◽  
L. Qiuguo

The preliminary downhole completions and surface facilities for the Yolla field had been designed based on the well test results from the Yolla–1 well. This well had produced insignificant sand during production testing, but during the field development planning, there was a concern raised regarding the propensity of some zones to sand. If the zones were prone to sanding, then the design of completions and surface facilities would have to be re-worked on with steps taken to mitigate any sanding. Mitigation steps would include perforation strategy (selective zone perforation, oriented perforation), sand screen or gravel pack.Therefore, a quick-look evaluation of the sanding potential of the particular zones of interest was undertaken to be completed within the project time frame. The sand zones analysed were Sand–2718, –2755, –2809, and –2973 from the Eastern View Coal Measures(EVCM).Yolla–2 well had the most complete data set available. A mechanical earth model (MEM) containing information on rock properties, pressures and in-situ stresses was constructed based on open-hole log data from the Yolla–2 appraisal well. Laboratory tests provided some uni-axial compressive strength (UCS) data for calibration of the model. The MEM data were input into sanding analyses, for various reservoir depths and for selected completion and perforation options. Since some MEM parameters were poorly constrained, best- and worst-case scenarios and sensitivities were evaluated to assess the influence of geomechanical parameters on sanding propensity.When Yolla–3 and –4 were drilled, more complete sets of logs were acquired and used to improve confidence in the earlier evaluations, and to check the validity of certain assumptions that had been made. With revised evaluation for Yolla–3 and –4, decisions on the completion strategy and perforation intervals were taken and implemented in the field development planAfter completion, both Yolla–3 and Yolla–4 were tested and sanding rates were monitored. After initial transient production of sand during clean-up, sand rates produced were insignificant. This confirmed the results of the quicklook geomechanical analyses that had been conducted.


2019 ◽  
Vol 11 (19) ◽  
pp. 5283 ◽  
Author(s):  
Gowida ◽  
Moussa ◽  
Elkatatny ◽  
Ali

Rock mechanical properties play a key role in the optimization process of engineering practices in the oil and gas industry so that better field development decisions can be made. Estimation of these properties is central in well placement, drilling programs, and well completion design. The elastic behavior of rocks can be studied by determining two main parameters: Young’s modulus and Poisson’s ratio. Accurate determination of the Poisson’s ratio helps to estimate the in-situ horizontal stresses and in turn, avoid many critical problems which interrupt drilling operations, such as pipe sticking and wellbore instability issues. Accurate Poisson’s ratio values can be experimentally determined using retrieved core samples under simulated in-situ downhole conditions. However, this technique is time-consuming and economically ineffective, requiring the development of a more effective technique. This study has developed a new generalized model to estimate static Poisson’s ratio values of sandstone rocks using a supervised artificial neural network (ANN). The developed ANN model uses well log data such as bulk density and sonic log as the input parameters to target static Poisson’s ratio values as outputs. Subsequently, the developed ANN model was transformed into a more practical and easier to use white-box mode using an ANN-based empirical equation. Core data (692 data points) and their corresponding petrophysical data were used to train and test the ANN model. The self-adaptive differential evolution (SADE) algorithm was used to fine-tune the parameters of the ANN model to obtain the most accurate results in terms of the highest correlation coefficient (R) and the lowest mean absolute percentage error (MAPE). The results obtained from the optimized ANN model show an excellent agreement with the laboratory measured static Poisson’s ratio, confirming the high accuracy of the developed model. A comparison of the developed ANN-based empirical correlation with the previously developed approaches demonstrates the superiority of the developed correlation in predicting static Poisson’s ratio values with the highest R and the lowest MAPE. The developed correlation performs in a manner far superior to other approaches when validated against unseen field data. The developed ANN-based mathematical model can be used as a robust tool to estimate static Poisson’s ratio without the need to run the ANN model.


1982 ◽  
Vol 15 ◽  
Author(s):  
W. S. Fyfe

ABSTRACTSelection of the best rock types for radwaste disposal will depend on their having minimal permeability, maximal flow dispersion, minimal chance of forming new wide aperture fractures, maximal ion retention, and minimal thermal and mining disturbance. While no rock is perfect, thinly bedded complex sedimentary sequences may have good properties, either as repository rocks, or as cover to a repository.Long time prediction of such favorable properties of a rock at a given site may be best modelled from studies of in situ rock properties. Fracture flow, dispersion history, and geological stability can be derived from direct observations of rocks themselves, and can provide the parameters needed for convincing demonstration of repository security for appropriate times.


2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4317
Author(s):  
Thywill Cephas Dzogbewu ◽  
Willie Bouwer du Preez

TiAl-based intermetallic alloys have come to the fore as the preferred alloys for high-temperature applications. Conventional methods (casting, forging, sheet forming, extrusion, etc.) have been applied to produce TiAl intermetallic alloys. However, the inherent limitations of conventional methods do not permit the production of the TiAl alloys with intricate geometries. Additive manufacturing technologies such as electron beam melting (EBM) and laser powder bed fusion (LPBF), were used to produce TiAl alloys with complex geometries. EBM technology can produce crack-free TiAl components but lacks geometrical accuracy. LPBF technology has great geometrical precision that could be used to produce TiAl alloys with tailored complex geometries, but cannot produce crack-free TiAl components. To satisfy the current industrial requirement of producing crack-free TiAl alloys with tailored geometries, the paper proposes a new heating model for the LPBF manufacturing process. The model could maintain even temperature between the solidified and subsequent layers, reducing temperature gradients (residual stress), which could eliminate crack formation. The new conceptualized model also opens a window for in situ heat treatment of the built samples to obtain the desired TiAl (γ-phase) and Ti3Al (α2-phase) intermetallic phases for high-temperature operations. In situ heat treatment would also improve the homogeneity of the microstructure of LPBF manufactured samples.


2021 ◽  
Author(s):  
Axel Andersson ◽  
Henry Kleta ◽  
Hildrun Otten-Balaccanu ◽  
Thomas Möller

<p>Die Erfassung und Überwachung des Wetters und des Klimas auf den Weltmeeren hat eine lange Tradition beim Deutschen Wetterdienst (DWD) und seinen Vorgängerorganisationen in Hamburg. Seit dem 19. Jahrhundert werden auf Schiffen systematisch meteorologische und ozeanographische Informationen gesammelt, die ein detailliertes Verständnis des maritimen Wetters und des Klimas ermöglichen. Bis heute sind die meteorologischen Schiffsbeobachtungen eine wichtige Datenquelle für die Wettervorhersage und die Klimaüberwachung.</p> <p>Der Deutsche Wetterdienst betreibt ein großes meteorologisches maritimes Messnetz, welches mehr als 500 Schiffe umfasst, die regelmäßig Wetterbeobachtungen auf allen Weltmeeren durchführen. Diese Schiffe beteiligen sich am internationalen <em>Voluntary Observing Ship (VOS) Scheme</em> und ihre Beobachtungen werden in Echtzeit über das globale Telekommunikationssystem (GTS) der WMO verbreitet. Dabei wird eine zunehmende Anzahl von Beobachtungen von automatischen Wetterstationen an Bord von Schiffen geliefert.</p> <p>Neben der Nutzung für die operationelle Wettervorhersage sind die maritim-meteorologischen Observationen ein wichtiger Beitrag zu klimatologischen Archiven wie der In-situ Datenbank des maritimen Klimadatenzentrums des DWD. Diese Datenbank besteht aus qualitätskontrollierten Daten aus Echtzeit- und <em>delayed mode</em> Datenströmen, sowie aus einer großen Menge historischer Daten. Der Datenbestand wächst kontinuierlich durch aktuelle operationelle Dateneingänge, aber auch durch die Digitalisierung alter meteorologischer Schiffsjournale und reicht von heute bis weit zurück in das 19 Jahrhundert. Im Rahmen des internationalen Datenaustauschs über die WMO / IOC <em>VOS Global Data Assembly Centres</em> (GDACs) werden die maritimen Klimadaten regelmäßig in den <em>International Comprehensive Ocean-Atmosphere Data Set</em> (ICOADS) integriert. Des Weiteren werden die Daten für eine Vielzahl von Klimaanwendungen verwendet, z.B. als Input für Reanalysen, für die operationelle Klimaüberwachung, klimatologische Analysen und Datenprodukte, sowie für die Kalibrierung von Satellitenbeobachtungen.</p>


2021 ◽  
Author(s):  
Danhua Leslie Zhang ◽  
Xiaodong Shi ◽  
Chunyan Qi ◽  
Jianfei Zhan ◽  
Xue Han ◽  
...  

Abstract With the decline of conventional resources, the tight oil reserves in the Daqing oilfield are becoming increasingly important, but measuring relative permeability and determining production forecasts through laboratory core flow tests for tight formations are both difficult and time consuming. Results of laboratory testing are questionable due to the very small pore volume and low permeability of the reservoir rock, and there are challenges in controlling critical parameters during the special core analysis (SCAL) tests. In this paper, the protocol and workflow of a digital rock study for tight sandstones of the Daqing oilfield are discussed. The workflow includes 1) using a combination of various imaging methods to build rock models that are representative of reservoir rocks, 2) constructing digital fluid models of reservoir fluids and injectants, 3) applying laboratory measured wettability index data to define rock-fluid interaction in digital rock models, 4) performing pore-scale modelling to accelerate reservoir characterization and reduce the uncertainty, and 5) performing digital enhanced oil recovery (EOR) tests to analyze potential benefits of different scenarios. The target formations are tight (0.01 to 5 md range) sandstones that have a combination of large grain sizes juxtaposed against small pore openings which makes it challenging to select an appropriate set of imaging tools. To overcome the wide range of pore and grain scales, the imaging tools selected for the study included high resolution microCT imaging on core plugs and mini-plugs sampled from original plugs, overview scanning electron microscopy (SEM) imaging, mineralogical mapping, and high-resolution SEM imaging on the mini-plugs. High resolution digital rock models were constructed and subsequently upscaled to the plug level to differentiate bedding and other features could be differentiated. Permeability and porosity of digital rock models were benchmarked against laboratory measurements to confirm representativeness. The laboratory measured Amott-Harvey wettability index of restored core plugs was honored and applied to the digital rock models. Digital fluid models were built using the fluid PVT data. A Direct HydroDynamic (DHD) pore-scale flow simulator based on density functional hydrodynamics was used to model multiphase flow in the digital experiments. Capillary pressure, water-oil, surfactant solution-oil, and CO2-oil relative permeability were computed, as well as primary depletion followed with three-cycle CO2 huff-n-puff, and primary depletion followed with three-cycle surfactant solution huff-n-puff processes. Recovery factors were obtained for each method and resulting values were compared to establish most effective field development scenarios. The workflow developed in this paper provides fast and reliable means of obtaining critical data for field development design. Capillary pressure and relative permeability data obtained through digital experiments provide key input parameters for reservoir simulation; production scenario forecasts help evaluate various EOR methods. Digital simulations allow the different scenarios to be run on identical rock samples numerous times, which is not possible in the laboratory.


2021 ◽  
Author(s):  
Abdullah Abu-Eida ◽  
Salem Al-Sabea ◽  
Milan Patra ◽  
Bader Akbar ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The Minagish field in West Kuwait is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly depleted tight carbonate intervals with uneven reservoir quality and curtailed mobility. These conditions have shifted the field development from vertical to horizontal wellbore completions. Achieving complete wellbore coverage is a challenge for any frac treatment performed in a long openhole lateral with disparities in reservoir characteristics. The fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, economic fracturing treatment options dwindle significantly, thus reservoir stimulation results are not always optimum. A multistage fracturing technique using Integrated Dynamic Diversion (IDD) has been performed first time in West Kuwait field well. The process uses active fluid energy to divert flow into a specific fracture point in the lateral, which can initiate and precisely place a fracture. The process uses two self-directed fluid streams: one inside the pipe and one in the annulus. The process mixes the two fluids downhole with high energy to form a consistent controllable mixture. The technique includes pinpoint fluid jetting at the point of interest, followed by in-situ HCL based crosslinked systems employed for improving individual stage targets. The IDD diversion shifts the fracture to unstimulated areas to create complex fractures which increases reservoir contact volume and improved overall conductivity in the lateral. The kinetic and chemical diversion of the IDD methodology is highly critical to control fluid loss in depleted intervals and results in enhanced stimulation. Pumping a frac treatment in openhole without control would tend to initiate a longitudinal fracture along the wellbore and may restrict productivity. By using specialized completion tools with nozzles at the end of the treating string, a new pinpoint process has been employed to initiate a transverse fracture plane in IDD applications. Proper candidate selection and fluid combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. By combining these processes into one continuous operation, the use of wireline/coiled tubing for jetting, plug setting and milling is eliminated, making the new multistage completion technology economical for these depleted wells. The application of the IDD methodology is a fit-for-purpose solution to address the unique challenges of openhole operations, formation technical difficulties, high-stakes economics, and untapped high potential from intermittent reservoirs. The paper will present post-operation results of this completion from all fractured zones along the lateral and will describe the lessons learned in implementation of this methodology which can be considered as best practice for application in similar challenges in other fields.


Sign in / Sign up

Export Citation Format

Share Document