Upregulation of HLA class II in pancreatic beta cells from organ donors with type 1 diabetes

Diabetologia ◽  
2021 ◽  
Author(s):  
Estefania Quesada-Masachs ◽  
Samuel Zilberman ◽  
Sakthi Rajendran ◽  
Tiffany Chu ◽  
Sara McArdle ◽  
...  
2021 ◽  
Author(s):  
Arcadio Rubio Garcia ◽  
Athina Paterou ◽  
Mercede Lee ◽  
Hubert Slawinski ◽  
Ricardo Ferreira ◽  
...  

Type 1 diabetes (T1D) is a common autoimmune disorder characterized by the destruction of insulin-secreting pancreatic beta cells, in which polymorphism of the human leukocyte antigen (HLA) class II region is the major genetic risk factor. However, how variation in class II molecules alters T1D risk remains a longstanding question. Here we show how T1D risk due to HLA class II haplotype combinations correlates with the frequency of negatively charged sequences in the CDR3β region of CD4+ T cell receptor (TCR) repertoires purified from peripheral blood. These sequences are known to be common in receptors that bind insulin B:9-23, the primary autoantigen in T1D. We also show the same effect in circulating activated CD4+ T cells from newly-diagnosed T1D cases, and in islet-infiltrating T cells from patients with active T1D. Furthermore, we demonstrate that the proportion of insulin-reactive CD4+ T cells present in islets is predicted by the frequency of these negatively charged CDR3β amino acid sequences. Our results suggest diagnostic uses of T cell repertoire profiling in early detection of insulin autoimmunity, and inform ongoing efforts to improve tolerance induction to insulin and prevention of T1D.


2013 ◽  
Vol 17 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Oindrila Raha ◽  
Biswanath Sarkar ◽  
Pasumarthy Veerraju ◽  
Godi Sudhakar ◽  
Pradip Raychaudhuri ◽  
...  

2019 ◽  
Author(s):  
Colleen M. Elso ◽  
Nicholas A. Scott ◽  
Lina Mariana ◽  
Emma I. Masterman ◽  
Andrew P.R. Sutherland ◽  
...  

AbstractType 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades. However, humanized mouse models are highly sought after because they offer both the experimental tractability of a mouse model and the clinical relevance of human-based research. Autoimmune T-cell responses against insulin, and its precursor proinsulin, play central roles in the autoimmune responses against pancreatic beta cells in both humans and NOD mice. As a first step towards developing a murine model of the human autoimmune response against pancreatic beta cells we set out to replace the murine insulin 1 gene (Ins1) with the human insulin gene (INS) using CRISPR/Cas9. Here we describe a NOD mouse strain that expresses human insulin in place of murine insulin 1, referred to as HuPI. HuPI mice express human insulin, and C-peptide, in their serum and pancreata and have normal glucose tolerance. Compared with wild type NOD mice, the incidence of diabetes is much lower in HuPI mice. Only 15-20% of HuPI mice developed diabetes after 300 days, compared to more than 60% of unmodified NOD mice. Immune-cell infiltration into the pancreatic islets of HuPI mice was not detectable at 100 days but was clearly evident by 300 days. This work highlights the feasibility of using CRISPR/Cas9 to create mouse models of human diseases that express proteins pivotal to the human disease. Furthermore, it reveals that even subtle changes in proinsulin protect NOD mice from diabetes.


2021 ◽  
Author(s):  
Monica Westley ◽  
Tiffany Richardson ◽  
Suhana Bedi ◽  
Baofeng Jia ◽  
Fiona S.L. Brinkman ◽  
...  

Abstract    A variety of islet autoantibodies (AAbs) can predict and possibly dictate eventual type 1 diabetes (T1D) diagnosis. Upwards of 75% of those with T1D are positive for AAbs against glutamic acid decarboxylase (GAD65), a producer of gamma-aminobutyric acid (GABA) in human pancreatic beta cells. Interestingly, bacterial populations within the human gut also express GAD65 and produce GABA. Evidence suggests that dysbiosis of the microbiome may correlate with T1D pathogenesis and physiology. Therefore, autoimmune linkages between the gut microbiome and islets susceptible to autoimmune attack need to be further elucidated. Utilizing silico analyses, we show here that 25 GAD sequences from different human gut bacterial sources show sequence and motif similarities to human beta cell GAD65. Our motif analyses determined that a majority of gut GAD sequences contain the pyroxical dependent decarboxylase domain of human GAD65 which is important for its enzymatic activity. Additionally, we showed overlap with known human GAD65 T-cell receptor epitopes which may implicate the immune destruction of beta cells. Thus, we propose a physiological hypothesis in which changes in the gut microbiome in those with T1D result in a release of bacterial GAD, thus causing miseducation of the host immune system. Due to the notable similarities, we found between humans and bacterial GAD, these deputized immune cells may then go on to target human beta cells leading to the development of T1D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laurie G. Landry ◽  
Amanda M. Anderson ◽  
Holger A. Russ ◽  
Liping Yu ◽  
Sally C. Kent ◽  
...  

Proinsulin is an abundant protein that is selectively expressed by pancreatic beta cells and has been a focus for development of antigen-specific immunotherapies for type 1 diabetes (T1D). In this study, we sought to comprehensively evaluate reactivity to preproinsulin by CD4 T cells originally isolated from pancreatic islets of organ donors having T1D. We analyzed 187 T cell receptor (TCR) clonotypes expressed by CD4 T cells obtained from six T1D donors and determined their response to 99 truncated preproinsulin peptide pools, in the presence of autologous B cells. We identified 14 TCR clonotypes from four out of the six donors that responded to preproinsulin peptides. Epitopes were found across all of proinsulin (insulin B-chain, C-peptide, and A-chain) including four hot spot regions containing peptides commonly targeted by TCR clonotypes derived from multiple T1D donors. Of importance, these hot spots overlap with peptide regions to which CD4 T cell responses have previously been detected in the peripheral blood of T1D patients. The 14 TCR clonotypes recognized proinsulin peptides presented by various HLA class II molecules, but there was a trend for dominant restriction with HLA-DQ, especially T1D risk alleles DQ8, DQ2, and DQ8-trans. The characteristics of the tri-molecular complex including proinsulin peptide, HLA-DQ molecule, and TCR derived from CD4 T cells in islets, provides an essential basis for developing antigen-specific biomarkers as well as immunotherapies.


2018 ◽  
Vol 127 (10) ◽  
pp. 653-662
Author(s):  
Abdelhafidh Hajjej ◽  
Wassim Y. Almawi ◽  
Mouna Stayoussef ◽  
Lasmar Hattab ◽  
Slama Hmida

AbstractThe molecular association of HLA class II with type 1 diabetes (T1DM) was investigated in Tunisian Arabs using 3 kinds of analyses. The first was a case-control association study, using Relative Predispositional Effects method, involved 137 T1DM cases and 258 control subjects. The second was family-based association-linkage study, using Transmission Disequilibrium Test, and covering 50 Tunisian families comprising 73 T1DM patients and 100 parents. The third was a wide correlation study between 4 DRB1 alleles (DRB1*03, *04, *11, *15) and T1DM in 52 countries, using Spearman’s Rho. Results from Case-control and family-based association studies showed that DRB1*03 and DRB1*04 alleles predispose to T1DM in Tunisian Arabs. Conversely, only DRB1*11 was protective for T1DM. DRB1*04-DQB1*03 haplotype was consistently associated positively with T1DM; DRB1*03/DRB1*04 genotype had the highest risk of T1DM development. Compared to DRB1*03, HLA-DRB1*04 was associated with higher T1DM incidence. Thus, the contribution of HLA class II to T1DM genetic susceptibility must be evaluated with regards to specific HLA alleles, genotypes, and haplotypes, and also ethnic and racial background.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Elena G. Novoselova ◽  
Olga V. Glushkova ◽  
Sergey M. Lunin ◽  
Maxim O. Khrenov ◽  
Svetlana B. Parfenyuk ◽  
...  

Type 1 diabetes is associated with the destruction of pancreatic beta cells, which is mediated via an autoimmune mechanism and consequent inflammatory processes. In this article, we describe a beneficial effect of peroxiredoxin 6 (PRDX6) in a type 1 diabetes mouse model. The main idea of this study was based on the well-known data that oxidative stress plays an important role in pathogenesis of diabetes and its associated complications. We hypothesised that PRDX6, which is well known for its various biological functions, including antioxidant activity, may provide an antidiabetic effect. It was shown that PRDX6 prevented hyperglycemia, lowered the mortality rate, restored the plasma cytokine profile, reversed the splenic cell apoptosis, and reduced the β cell destruction in Langerhans islets in mice with a severe form of alloxan-induced diabetes. In addition, PRDX6 protected rat insulinoma RIN-m5F β cells, cultured with TNF-α and IL-1β, against the cytokine-induced cytotoxicity and reduced the apoptotic cell death and production of ROS. Signal transduction studies showed that PRDX6 prevented the activation of NF-κB and c-Jun N-terminal kinase signaling cascades in RIN-m5F β cells cultured with cytokines. In conclusion, there is a prospect for therapeutic application of PRDX6 to delay or even prevent β cell apoptosis in type 1 diabetes.


2005 ◽  
Vol 12 (1) ◽  
pp. 213-217 ◽  
Author(s):  
Ayesha A. Motala ◽  
Marc Busson ◽  
Einas M. Al-Harbi ◽  
Manal A. A. Khuzam ◽  
Emtiaz M. D. Al-Omari ◽  
...  

ABSTRACT Whereas the genetic risk for type 1 diabetes is linked to human leukocyte antigen (HLA) class II genes, the HLA association in type 2 (non-insulin-dependent) diabetes is less clear. The association between HLA class II genotypes and type 2 diabetes was examined in adult Bahrainis, an Arab population with a high prevalence of type 2 diabetes. HLA-DRB1* and -DQB1* genotyping of 86 unrelated type 2 diabetes patients (age, 51.6 ± 8.2 years; mean duration of diabetes, 7.7 ± 7.1 years) who had a strong family history of diabetes (52 of 72 versus 0 of 89 for controls, P < 0.001) and 89 healthy subjects was done by PCR-sequence-specific priming. DRB1*040101 (0.1221 versus 0.0562, P = 0.019) and DRB1*070101 (0.2151 versus 0.0843, P < 0.001) were positively associated, while DRB1*110101 (0.0698 versus 0.1461, P = 0.014) and DRB1*160101 (0.0640 versus 0.1236, P = 0.038) were negatively associated with type 2 diabetes. DRB1*040101-DQB1*0302 (0.069 versus 0.0007; P = 0.004), DRB1*070101-DQB1*0201 (0.178 versus 0.0761, P = 0.007), DRB1*070101-DQB1*050101 (0.125 versus 0.0310, P = 0.002), and DRB1*150101-DQB1*060101 (0.0756 versus 0.0281, P = 0.008) were more prevalent among patients, while DRB1*160101-DQB1*050101 (0.0702 versus 0.0349, P = 0.05) was more prevalent among controls, conferring disease susceptibility or protection, respectively. In Bahrainis with type 2 diabetes, there is a significant association with select HLA class II genotypes, which were distinct from those in type 1 diabetes.


2020 ◽  
Vol 105 (3) ◽  
pp. e245-e254 ◽  
Author(s):  
Thomas Jacobi ◽  
Lucas Massier ◽  
Nora Klöting ◽  
Katrin Horn ◽  
Alexander Schuch ◽  
...  

Abstract Context Common genetic susceptibility may underlie the frequently observed co-occurrence of type 1 and type 2 diabetes in families. Given the role of HLA class II genes in the pathophysiology of type 1 diabetes, the aim of the present study was to test the association of high density imputed human leukocyte antigen (HLA) genotypes with type 2 diabetes. Objectives and Design Three cohorts (Ntotal = 10 413) from Leipzig, Germany were included in this study: LIFE-Adult (N = 4649), LIFE-Heart (N = 4815) and the Sorbs (N = 949) cohort. Detailed metabolic phenotyping and genome-wide single nucleotide polymorphism (SNP) data were available for all subjects. Using 1000 Genome imputation data, HLA genotypes were imputed on 4-digit level and association tests for type 2 diabetes, and related metabolic traits were conducted. Results In a meta-analysis including all 3 cohorts, the absence of HLA-DRB5 was associated with increased risk of type 2 diabetes (P = 0.001). In contrast, HLA-DQB*06:02 and HLA-DQA*01:02 had a protective effect on type 2 diabetes (P = 0.005 and 0.003, respectively). Both alleles are part of the well-established type 1 diabetes protective haplotype DRB1*15:01~DQA1*01:02~DQB1*06:02, which was also associated with reduced risk of type 2 diabetes (OR 0.84; P = 0.005). On the contrary, the DRB1*07:01~DQA1*02:01~DQB1*03:03 was identified as a risk haplotype in non–insulin-treated diabetes (OR 1.37; P = 0.002). Conclusions Genetic variation in the HLA class II locus exerts risk and protective effects on non–insulin-treated type 2 diabetes. Our data suggest that the genetic architecture of type 1 diabetes and type 2 diabetes might share common components on the HLA class II locus.


2017 ◽  
Vol 174 (13) ◽  
pp. 2074-2084 ◽  
Author(s):  
Raghu Ganugula ◽  
Meenakshi Arora ◽  
Patcharawalai Jaisamut ◽  
Ruedeekorn Wiwattanapatapee ◽  
Heather G Jørgensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document