scholarly journals OPTIMIZING THE VELOCITY OF RING SHAPE PARAMETER FOR DESIGNING THE NOZZLES USING CFD

Author(s):  
Obai Younis ◽  
Reem Ahmed ◽  
Ali Mohammed Hamdan ◽  
Dania Ahmed

This study aims to optimize the velocity of ring shape parameter for designing the nozzles using computational fluid dynamics (CFD) and investigated the flow in nozzles using ANSYS, Inc. simulation software. The model geometries were defined using ANSYS FLUENT-Design Modeler platform. All nozzles were designed on unstructured triangular elements comprising of 1200000 mesh nodes. The differential governing equations were applied in ANSYS FLUENT based on a finite volume method. The distance and dimensions of ring location significantly influence the velocity of water during flow where the maximum velocity at double rings reduces the surface area at distance of 7mm and 15mm and 2x2 mm dimensions. Considering 8, 10, and 12 bar liner proportions, there was an increase in the velocity at maximum points in ring shapes.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Prachi R. Prabhukhot ◽  
Aditya R. Prabhukhot

The power generated in wind turbine depends on wind speed and parameters of blade geometry like aerofoil shape, blade radius, chord length, pitch angle, solidity, etc. Aerofoil selection is the crucial factor in establishing the efficient wind turbine. More than one aerofoil in a blade can increase the efficiency further. Previous studies of different aerofoils have shown that efficiency of small scale wind turbine increases when NREL S822 aerofoil is used for wind speed on and above 10 m/s. This paper introduces a study on effect of low wind speed (V = 5 m/s) on performance of blade profile. Aerofoils NREL S822/S823 are used for microwind turbine with S823 near root and S822 near tip. Blade of 3 m radius with spherical tubercles over entire span is analyzed considering 5 deg angle of attack. The computational fluid dynamics (CFD) simulation was carried out using ANSYS fluent to study the behavior of blade profile at various contours. The study shows that blade experiences maximum turbulence and minimum pressure near trailing edge of the tip of blade. The region also experiences maximum velocity of the flow. These factors result in pushing the aerofoil in upward direction for starting the wind turbine to rotate at the speed as low as 5 m/s.


Author(s):  
Merouane Habib ◽  
Senouci Mohammed

In this paper, we investigate the no-reacting swirling flow by using the numerical simulation based to the unsteady Reynolds-averaged Navier-Stokes approach. The numerical simulation was realized by using a computational fluid dynamics CFD code. The governing equations are solved by using the finite volume method with two classical models of turbulence K-epsilon and Shear Stress K-ω. The objective of this paper is therefore to evaluate the performance of the two models in predicting the recirculation zones in a swirled turbulent flow. The current models are validated by comparing the numerical results of the axial, radial and tangential velocities to the experimental data from literature.


2018 ◽  
Vol 18 (2) ◽  
pp. 253-276
Author(s):  
Kadhum A Jehhef ◽  
Mohamed A Al Abas Siba

The free convection between two tilted adiabatic plates with centered heated horizontalcylinder with attached plate fin was investigated experimentally and numerically. Theexperimental rig constructed from vertical adiabatic was filled with air plates with aspectratio of (A= 12) tilted by angles of (15o, 30o, 45o, 60o, 75o, and 90o). A horizontal heatedcylinder with diameter of (16 cm) subjected under constant heat flux of (100, 500, 700, and1000 W/m2), the Rayleigh number ranging from (3.5 ×107 to 4.5 ×109). At the bottom of therig left an opining with distance of (2, 4, 6, and 8 cm) but the upper left open to theatmosphere. The tested cases was of (without fin, smooth, triangular, square, and semi-circlefin) was attached to the right wall of the cavity. The numerical solution of the case wasperformed by solving the governing equations by ANSYS-FLUENT 14.0 package thatdependent upon the finite volume method. The experimental results show that the Nusseltnumber increases with increasing Rayleigh number, decreasing the inclination angle,increasing heat flux and with increasing the bottom opining distance. Basically, the resultsshowed that the using fins with any geometry will lead to increase the heat transfer rate. Theoptimum increasing in the Nusselt number was found by using triangular plat fin. Finally,the experimental data was compared with a numerical calculation and found that there is agood agreement in the same conditions.


2020 ◽  
Vol 42 ◽  
pp. e35
Author(s):  
Karine Klippel ◽  
Elisa Valentim Goulart ◽  
Gilberto Fisch ◽  
Neyval Costa Reis Junior ◽  
Cayo Prado Fernandes Francisco

The atmospheric flow at Alcântara Launch Center (CLA) was studied using Computational Fluid Dynamics (CFD) techniques. To characterize the region were considered the coastal cliff and the Integration Mobile Tower, called TMI, both within the launching and preparation area (SPL). In this study, the cliff was represented by a step of 90° with 40 meters of height. The inlet velocity profile was elaborate according to the power law, with exponent of 0.11, freestream velocity of 20 m/s and Reynolds number of 4.3 x 105, adopting neutral atmosphere. Three wind directions were considered, 90º, 125º and 135°. The numerical model used was the Reynolds Stress Model (RSM), based on the Reynolds-Averaged Navier-Stokes (RANS) equations. The solution of the equations was obtained by ANSYS FLUENT 19, which uses the finite volume method. The results showed good agreement with the wind tunnel tests especially for wind direction perpendicular to the cliff. The incident wind direction strongly influences the flow dynamics in the SPL forming a helicoidal vortex over the coastal cliff the higher the wind slope.


2014 ◽  
Vol 592-594 ◽  
pp. 1924-1929
Author(s):  
Krishna Murari Pandey ◽  
Ritabrata Thakur ◽  
Abhinav Hazarika ◽  
Tarun Ashutosh ◽  
Dipankar Gogoi

The rate of mean blood flow through arteries depend on the resistance to flow presented by the blood vessels. Mean blood pressure decreases as the circulating blood moves away from the heart through arteries and capillaries due to viscous losses of energy. Atherosclerosis is a common phenomenon that is observed causing blockage in coronary arteries leading to cardiac arrest. This blockage is due to the deposition of cholesterol or plaque on the inner walls of the coronary artery. This paper provides an analytical study on the variation of static pressure with multiple blockages in the artery implementing the conventional simulation software. A general three dimensional section of the coronary artery was taken for the analysis and the variation of static pressure with increase in the number of blockages due to cholesterol deposition was studied. Meshing of the geometry and specification of the boundary types have been accomplished using GAMBIT 2.3.16 and the analysis has been carried out using ANSYS FLUENT 6.3.26.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yue Weng ◽  
Xi Zhang ◽  
Xiaohu Guo ◽  
Xianwei Zhang ◽  
Yutong Lu ◽  
...  

AbstractIn unstructured finite volume method, loop on different mesh components such as cells, faces, nodes, etc is used widely for the traversal of data. Mesh loop results in direct or indirect data access that affects data locality significantly. By loop on mesh, many threads accessing the same data lead to data dependence. Both data locality and data dependence play an important part in the performance of GPU simulations. For optimizing a GPU-accelerated unstructured finite volume Computational Fluid Dynamics (CFD) program, the performance of hot spots under different loops on cells, faces, and nodes is evaluated on Nvidia Tesla V100 and K80. Numerical tests under different mesh scales show that the effects of mesh loop modes are different on data locality and data dependence. Specifically, face loop makes the best data locality, so long as access to face data exists in kernels. Cell loop brings the smallest overheads due to non-coalescing data access, when both cell and node data are used in computing without face data. Cell loop owns the best performance in the condition that only indirect access of cell data exists in kernels. Atomic operations reduced the performance of kernels largely in K80, which is not obvious on V100. With the suitable mesh loop mode in all kernels, the overall performance of GPU simulations can be increased by 15%-20%. Finally, the program on a single GPU V100 can achieve maximum 21.7 and average 14.1 speed up compared with 28 MPI tasks on two Intel CPUs Xeon Gold 6132.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4743
Author(s):  
Tomasz Janoszek ◽  
Zbigniew Lubosik ◽  
Lucjan Świerczek ◽  
Andrzej Walentek ◽  
Jerzy Jaroszewicz

The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the ventilation network of the Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet changes in the mixture of air and water vapor along the excavation at a distance was measured at 10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained results of in situ tests were related to the results of numerical calculations using computational fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX software. The dimensions and geometry of the excavation under investigation are presented. The authors describe the adopted assumptions and conditions for the numerical model and discuss the results of the numerical solution.


2020 ◽  
Vol 330 ◽  
pp. 01005
Author(s):  
Abderrahmane AISSA ◽  
Mohamed Amine MEDEBBER ◽  
Khaled Al-Farhany ◽  
Mohammed SAHNOUN ◽  
Ali Khaleel Kareem ◽  
...  

Natural convection of a magneto hydrodynamic nanofluid in a porous cavity in the presence of a magnetic field is investigated. The two vertical side walls are held isothermally at temperatures Th and Tc, while the horizontal walls of the outer cone are adiabatic. The governing equations obtained with the Boussinesq approximation are solved using Comsol Multiphysics finite element analysis and simulation software. Impact of Rayleigh number (Ra), Hartmann number (Ha) and nanofluid volume fraction (ϕ) are depicted. Results indicated that temperature gradient increases considerably with enhance of Ra and ϕ but it reduces with increases of Ha.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


Author(s):  
D. Dupleac

The paper overviews the analytical studies performed at Politehnica University of Bucharest on the analysis of late phase severe accident phenomena in a Canada Deuterium Uranium (CANDU) plant. The calculations start from a dry debris bed at the bottom of calandria vessel. Both SCDAPSIM/RELAP code and ansys-fluent computational fluid dynamics (CFD) code are used. Parametric studies are performed in order to quantify the effect of several identified sources of uncertainty on calandria vessel failure: metallic fraction of zirconium inside the debris, containment pressure, timing of water depletion inside calandria vessel, steam circulation in calandria vessel above debris bed, debris temperature at moment of water depletion inside calandria vessel, calandria vault nodalization, and the gap heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document