scholarly journals Stimulus-induced narrow-band gamma oscillations in humans can be recorded using open-hardware low-cost EEG amplifier

2021 ◽  
Author(s):  
Srividya Pattisapu ◽  
Supratim Ray

Stimulus-induced narrow-band gamma oscillations (30-70 Hz) in human electro - encephalograph (EEG) have been linked to attentional and memory mechanisms and are abnormal in mental health conditions such as autism, schizophrenia and Alzheimer's Disease. This suggests that gamma oscillations could be valuable both as a research tool and an inexpensive, non-invasive biomarker for disease evaluation. However, since the absolute power in EEG decreases rapidly with increasing frequency following a "1/f" power law, and the gamma band includes line noise frequency, these oscillations are highly susceptible to instrument noise. Previous studies that recorded stimulus-induced gamma oscillations used expensive research-grade EEG amplifiers to address this issue. While low-cost EEG amplifiers have become popular in Brain Computer Interface applications that mainly rely on low-frequency oscillations (<30 Hz) or steady-state-visually-evoked-potentials, whether they can also be used to measure stimulus-induced gamma oscillations is unknown. We recorded EEG signals using a low-cost, open-source amplifier (OpenBCI) and a traditional, research-grade amplifier (Brain Products GmbH) in male (N = 6) and female (N = 5) subjects (22-29 years) while they viewed full-screen static gratings that are known to induce gamma oscillations. OpenBCI recordings showed gamma response in almost all the subjects who showed a gamma response in Brain Products recordings, and the spectral and temporal profiles of these responses in alpha (8-13 Hz) and gamma bands were highly correlated between OpenBCI and Brain Products recordings. These results suggest that low-cost amplifiers can potentially be used in stimulus induced gamma response detection, making its research, and application in medicine more accessible.

2020 ◽  
Author(s):  
Jordan Wehrman ◽  
Sidsel Sörensen ◽  
Peter de Lissa ◽  
Nicholas A. Badcock

AbstractLow-cost, portable electroencephalographic (EEG) headsets have become commercially available in the last 10 years. One such system, Emotiv’s EPOC, has been modified to allow event-related potential (ERP) research. Because of these innovations, EEG research may become more widely available in non-traditional settings. Although the EPOC has previously been shown to provide data comparable to research-grade equipment and has been used in real-world settings, how EPOC performs without the electrical shielding used in research-grade laboratories is yet to be systematically tested. In the current article we address this gap in the literature by asking participants to perform a simple EEG experiment in shielded and unshielded contexts. The experiment was the observation of human versus wristwatch faces which were either inverted or noninverted. This method elicited the face-sensitive N170 ERP.In both shielded and unshielded contexts, the N170 amplitude was larger when participants viewed human faces and peaked later when a human face was inverted. More importantly, Bayesian analysis showed no difference in the N170 measured in the shielded and unshielded contexts. Further, the signal recorded in both contexts was highly correlated. The EPOC appears to reliably record EEG signals without a purpose-built electrically-shielded room or laboratory-grade preamplifier.


1994 ◽  
Vol 30 (10) ◽  
pp. 213-219 ◽  
Author(s):  
Hendrik Pieters ◽  
Victor Geuke

Samples of yellow eel from various locations in the Dutch Rhine area have been analyzed for trend monitoring of mercury since 1977. In the western Rhine delta mercury levels in eels have hardly changed since the seventies, whereas in the eastern part of the Dutch Rhine area a considerable decrease of mercury concentrations in eel has occurred. Because of continuous sedimentation of contaminated suspended matter transported from upstream regions, accumulation rates and concentrations of mercury in eel in the western Rhine delta remained at a relatively high level. Analyses of methyl mercury in biota have been performed to elucidate the role of methyl mercury in the mercury contamination of the Dutch Rhine ecosystem. Low percentages of methyl mercury were observed in zooplankton (3 to 35%). In benthic organisms (mussels) percentages of methyl mercury ranged from 30 to 57%, while in fish species and liver of aquatic top predator birds almost all the mercury was present in the form of methyl mercury (&gt; 80%). During the period 1970-1990 mercury concentrations of suspended matter in the eastern Rhine delta have drastically decreased. These concentrations seemed to be highly correlated with mercury concentrations of eel (R = 0.84). The consequences of this relation are discussed.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 616
Author(s):  
Virginia Birlanga ◽  
José Ramón Acosta-Motos ◽  
José Manuel Pérez-Pérez

Cultivated lettuce (Lactuca sativa L.) is one of the most important leafy vegetables in the world, and most of the production is concentrated in the Mediterranean Basin. Hydroponics has been successfully utilized for lettuce cultivation, which could contribute to the diversification of production methods and the reduction of water consumption and excessive fertilization. We devised a low-cost procedure for closed hydroponic cultivation and easy phenotyping of root and shoot attributes of lettuce. We studied 12 lettuce genotypes of the crisphead and oak-leaf subtypes, which differed on their tipburn resistance, for three growing seasons (Fall, Winter, and Spring). We found interesting genotype × environment (G × E) interactions for some of the studied traits during early growth. By analyzing tipburn incidence and leaf nutrient content, we were able to identify a number of nutrient traits that were highly correlated with cultivar- and genotype-dependent tipburn. Our experimental setup will allow evaluating different lettuce genotypes in defined nutrient solutions to select for tipburn-tolerant and highly productive genotypes that are suitable for hydroponics.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Persona Paolo ◽  
Valeri Ilaria ◽  
Zarantonello Francesco ◽  
Forin Edoardo ◽  
Sella Nicolò ◽  
...  

Abstract Background During COVID-19 pandemic, optimization of the diagnostic resources is essential. Lung Ultrasound (LUS) is a rapid, easy-to-perform, low cost tool which allows bedside investigation of patients with COVID-19 pneumonia. We aimed to investigate the typical ultrasound patterns of COVID-19 pneumonia and their evolution at different stages of the disease. Methods We performed LUS in twenty-eight consecutive COVID-19 patients at both admission to and discharge from one of the Padua University Hospital Intensive Care Units (ICU). LUS was performed using a low frequency probe on six different areas per each hemithorax. A specific pattern for each area was assigned, depending on the prevalence of A-lines (A), non-coalescent B-lines (B1), coalescent B-lines (B2), consolidations (C). A LUS score (LUSS) was calculated after assigning to each area a defined pattern. Results Out of 28 patients, 18 survived, were stabilized and then referred to other units. The prevalence of C pattern was 58.9% on admission and 61.3% at discharge. Type B2 (19.3%) and B1 (6.5%) patterns were found in 25.8% of the videos recorded on admission and 27.1% (17.3% B2; 9.8% B1) on discharge. The A pattern was prevalent in the anterosuperior regions and was present in 15.2% of videos on admission and 11.6% at discharge. The median LUSS on admission was 27.5 [21–32.25], while on discharge was 31 [17.5–32.75] and 30.5 [27–32.75] in respectively survived and non-survived patients. On admission the median LUSS was equally distributed on the right hemithorax (13; 10.75–16) and the left hemithorax (15; 10.75–17). Conclusions LUS collected in COVID-19 patients with acute respiratory failure at ICU admission and discharge appears to be characterized by predominantly lateral and posterior non-translobar C pattern and B2 pattern. The calculated LUSS remained elevated at discharge without significant difference from admission in both groups of survived and non-survived patients.


2015 ◽  
Vol 113 (5) ◽  
pp. 1556-1563 ◽  
Author(s):  
Freek van Ede ◽  
Stan van Pelt ◽  
Pascal Fries ◽  
Eric Maris

Neural oscillations have emerged as one of the major electrophysiological phenomena investigated in cognitive and systems neuroscience. These oscillations are typically studied with regard to their amplitude, phase, and/or phase coupling. Here we demonstrate the existence of another property that is intrinsic to neural oscillations but has hitherto remained largely unexplored in cognitive and systems neuroscience. This pertains to the notion that these oscillations show reliable diversity in their phase-relations between neighboring recording sites (phase-relation diversity). In contrast to most previous work, we demonstrate that this diversity is restricted neither to low-frequency oscillations nor to periods outside of sensory stimulation. On the basis of magnetoencephalographic (MEG) recordings in humans, we show that this diversity is prominent not only for ongoing alpha oscillations (8–12 Hz) but also for gamma oscillations (50–70 Hz) that are induced by sustained visual stimulation. We further show that this diversity provides a dimension within electrophysiological data that, provided a sufficiently high signal-to-noise ratio, does not covary with changes in amplitude. These observations place phase-relation diversity on the map as a prominent and general property of neural oscillations that, moreover, can be studied with noninvasive methods in healthy human volunteers. This opens important new avenues for investigating how neural oscillations contribute to the neural implementation of cognition and behavior.


2014 ◽  
Vol 926-930 ◽  
pp. 1857-1860
Author(s):  
Zhou Zheng ◽  
Meng Yuan Li ◽  
Wei Jiang Wang

In order to reduce the burden of the calculation and the low frequency resolution of the tradition GNSS signal intermediate narrow band anti-jamming method, it introduces a high efficient approach of narrow band interference rejection based on baseband GNSS signal processing. After digital down conversion to baseband and down sampling to a low rate, the interference is removed in frequency domain. According to the theoretical analysis and simulation, it claims that the method can reduce the calculation and increase the detection resolution in frequency domain which will realize a high efficient interference rejection.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3721 ◽  
Author(s):  
Usman Rashid ◽  
Imran Niazi ◽  
Nada Signal ◽  
Denise Taylor

Texas Instruments ADS1299 is an attractive choice for low cost electroencephalography (EEG) devices owing to its low power consumption and low input referred noise. To date, there have been no rigorous evaluations of its performance. In this EEG experimental study we evaluated the performance of the ADS1299 against a high quality laboratory-based system. Two self-paced lower limb motor tasks were performed by 22 healthy participants. Recorded power across delta, theta, alpha, and beta EEG bands, the power ratio across the motor tasks, pre-movement noise, and signal-to-noise ratio were obtained for evaluation. The amplitude and time of the negative peak in the movement-related cortical potentials (MRCPs) extracted from the EEG data were also obtained. Using linear mixed models, no statistically significant differences (p > 0.05) were found in any of these measures across the two systems. These findings were further supported by evaluation of cosine similarity, waveform differences, and topographic maps. There were statistically significant differences in MRCPs across the motor tasks in both systems. We conclude that the performance of the ADS1299 in combination with wet Ag/AgCl electrodes is analogous to that of a laboratory-based system in a low frequency (<40 Hz) EEG recording.


2019 ◽  
Vol 73 ◽  
pp. 167-179 ◽  
Author(s):  
Rafaela C. de Freitas ◽  
Rodrigo Alves ◽  
Abel G. da Silva Filho ◽  
Ricardo E. de Souza ◽  
Byron L.D. Bezerra ◽  
...  

2021 ◽  
Vol 118 (51) ◽  
pp. e2114549118
Author(s):  
Ricardo Martins Merino ◽  
Carolina Leon-Pinzon ◽  
Walter Stühmer ◽  
Martin Möck ◽  
Jochen F. Staiger ◽  
...  

Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input’s statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons’ sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.


2021 ◽  
Vol 77 (1) ◽  
pp. 62-74
Author(s):  
Nathan David Wright ◽  
Patrick Collins ◽  
Lizbé Koekemoer ◽  
Tobias Krojer ◽  
Romain Talon ◽  
...  

Despite the tremendous success of X-ray cryo-crystallography in recent decades, the transfer of crystals from the drops in which they are grown to diffractometer sample mounts remains a manual process in almost all laboratories. Here, the Shifter, a motorized, interactive microscope stage that transforms the entire crystal-mounting workflow from a rate-limiting manual activity to a controllable, high-throughput semi-automated process, is described. By combining the visual acuity and fine motor skills of humans with targeted hardware and software automation, it was possible to transform the speed and robustness of crystal mounting. Control software, triggered by the operator, manoeuvres crystallization plates beneath a clear protective cover, allowing the complete removal of film seals and thereby eliminating the tedium of repetitive seal cutting. The software, either upon request or working from an imported list, controls motors to position crystal drops under a hole in the cover for human mounting at a microscope. The software automatically captures experimental annotations for uploading to the user's data repository, removing the need for manual documentation. The Shifter facilitates mounting rates of 100–240 crystals per hour in a more controlled process than manual mounting, which greatly extends the lifetime of the drops and thus allows a dramatic increase in the number of crystals retrievable from any given drop without loss of X-ray diffraction quality. In 2015, the first in a series of three Shifter devices was deployed as part of the XChem fragment-screening facility at Diamond Light Source, where they have since facilitated the mounting of over 120 000 crystals. The Shifter was engineered to have a simple design, providing a device that could be readily commercialized and widely adopted owing to its low cost. The versatile hardware design allows use beyond fragment screening and protein crystallography.


Sign in / Sign up

Export Citation Format

Share Document