narrow dynamic range
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
pp. 1-13
Author(s):  
Yen Lin Chen ◽  
Thomas M. Baker ◽  
Frank Lee ◽  
Bo Shui ◽  
Jane C. Lee ◽  
...  

Introduction: Studies in Cx40-GCaMP2 mice, which express calcium biosensor GCaMP2 in the endothelium under connexin 40 promoter, have identified the unique properties of endothelial calcium signals. However, Cx40-GCaMP2 mouse is associated with a narrow dynamic range and lack of signal in the venous endothelium. Recent studies have proposed many GCaMPs (GCaMP5/6/7/8) with improved properties although their performance in endothelium-specific calcium studies is not known. Methods: We characterized a newly developed mouse line that constitutively expresses GCaMP8 in the endothelium under the VE-cadherin (Cdh5-GCaMP8) promoter. Calcium signals through endothelial IP3 receptors and TRP vanilloid 4 (TRPV4) ion channels were recorded in mesenteric arteries (MAs) and veins from Cdh5-GCaMP8 and Cx40-GCaMP2 mice. Results: Cdh5-GCaMP8 mice showed lower baseline fluorescence intensity, higher dynamic range, and higher amplitudes of individual calcium signals than Cx40-GCaMP2 mice. Importantly, Cdh5-GCaMP8 mice enabled the first recordings of discrete calcium signals in the intact venous endothelium and revealed striking differences in IP3 receptor and TRPV4 channel calcium signals between MAs and mesenteric veins. Conclusion: Our findings suggest that Cdh5-GCaMP8 mice represent significant improvements in dynamic range, sensitivity for low-intensity signals, and the ability to record calcium signals in venous endothelium.


2021 ◽  
Author(s):  
Thomas J. Kucharski ◽  
Rufus Hards ◽  
Kristina M. Godek ◽  
Scott A. Gerber ◽  
Duane A. Compton

SummaryKinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e. all-or-none) or only fractionally phosphorylated. Using quantitative mass spectrometry (MS), we measured phospho-occupancy on the conserved kinetochore protein Hec1 (NDC80) that directly binds microtubules. None of the positions measured exceeded ∼50% phospho-occupancy, and the cumulative phospho-occupancy changed by only ∼20% in response to changes in microtubule attachment status. The narrow dynamic range of phospho-occupancy is maintained by ongoing phosphatase activity. Further, both Cdk1-Cyclin B1 and Aurora kinases phosphorylate Hec1 to enhance error correction in response to different types of microtubule attachment errors. Thus, networks of kinases and phosphatases maintain low inherent phospho-occupancy to promote microtubule attachment to kinetochores while providing for high sensitivity of kinetochore-microtubule attachments to very small changes in phospho-occupancy to ensure high mitotic fidelity.


2020 ◽  
Vol 118 (3) ◽  
pp. 546a
Author(s):  
Shiba S. Dandpat ◽  
Sujay Ray ◽  
Surajit Chatterjee ◽  
Nils G. Walter

2020 ◽  
Vol 185 ◽  
pp. 03034
Author(s):  
Bojun Hou ◽  
Ke Chen ◽  
Yilei Zhao ◽  
Leanne Lai Hang Chan

S334ter-3 retinal degeneration (RD) rats have been widely used to investigate degenerative diseases of the retina. In this model, morphological and electrophysiological changes have been observed in the retina, superior colliculus and primary visual cortex (V1). In this study, experimental rats (S334ter-3) carried one copy of the mutant transgene. We measured the extracellular responses in the primary visual cortex to three stimulus contrast levels (spontaneous activity, medium contrast, and high contrast) at the preferred parameters of each recorded cell under classical receptive field (CRF) stimulation. Then we compared the responses (spontaneous activity and the visual evoked responses) in RD rats with those in wildtype rats. Our results show that V1 cells in the RD group exhibit stronger spontaneous activity but weaker stimulus-evoked responses at medium and high contrasts. At the same time, compared with WT group, RD group also showed a narrow dynamic range. These results indicate the decrease in discriminating the stimuli contrast and loss in responses and lower signal to noise ratio after retina degeneration.


2019 ◽  
Vol 9 (17) ◽  
pp. 3443 ◽  
Author(s):  
Dat Ngo ◽  
Gi-Dong Lee ◽  
Bongsoon Kang

This paper presents a fast and compact hardware implementation using an efficient haze removal algorithm. The algorithm employs a modified hybrid median filter to estimate the hazy particle map, which is subsequently subtracted from the hazy image to recover the haze-free image. Adaptive tone remapping is also used to improve the narrow dynamic range due to haze removal. The computation error of the proposed hardware architecture is minimized compared with the floating-point algorithm. To ensure real-time hardware operation, the proposed architecture utilizes the modified hybrid median filter using the well-known Batcher’s parallel sort. Hardware verification confirmed that high-resolution video standards were processed in real time for haze removal.


2017 ◽  
Vol 6 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Takahiro Zushi ◽  
Hirotsugu Kojima ◽  
Hiroshi Yamakawa

Abstract. Plasma waves are important observational targets for scientific missions investigating space plasma phenomena. Conventional fast Fourier transform (FFT)-based spectrum plasma wave receivers have the disadvantages of a large size and a narrow dynamic range. This paper proposes a new type of FFT-based spectrum plasma wave receiver that overcomes the disadvantages of conventional receivers. The receiver measures and calculates the whole spectrum by dividing the observation frequency range into three bands: bands 1, 2, and 3, which span 1 Hz to 1 kHz, 1 to 10 kHz, and 10 to 100 kHz, respectively. To reduce the size of the receiver, its analog section was realized using application-specific integrated circuit (ASIC) technology, and an ASIC chip was successfully developed. The dimensions of the analog circuits were 4.21 mm  ×  1.16 mm. To confirm the performance of the ASIC, a test system for the receiver was developed using the ASIC, an analog-to-digital converter, and a personal computer. The frequency resolutions for bands 1, 2, and 3 were 3.2, 32, and 320 Hz, respectively, and the average time resolution was 384 ms. These frequency and time resolutions are superior to those of conventional FFT-based receivers.


Author(s):  
MASANAO HARA ◽  
SHUHEI OKADA ◽  
HIROSI YAGI ◽  
TAKASHI MORIYAMA ◽  
KOJI SHIGEHARA ◽  
...  

The Noise Reduction Filter (NRF) that is developed by the authors is applied to extract artificial nightlight components of a time series DMSP/OLS-VIS dataset. High frequency components from the time series DMSP/OLS-VIS dataset are exhausted and a direct current component is extracted by the NRF that is one of the Fourier analysis techniques. The inference of cloud and other disturbance noise are also removed, and a stable artificial nightlight is extracted by the NRF filtration. The intensity value in high power light areas observed by DMSP/OLS-VIS is saturated because of narrow dynamic range of the sensor gain. A simple model called "Deltaic Model" developed by authors corrected those saturated value. Verification of the accuracy of correction methods above described is carried out by comparison with electric power consumption of the calculated values from the model and statistical ones of each prefecture in Japan. Correlation of the values is satisfactory as shown R2 = 0.725. The results of this work shows the remote sensing method by using the DMSP/OLS-VIS nighttime imagery with the correction methods above described is useful to estimate the electric power consumption through a year of fixed areas. Keyword: DMSP/OLS-VIS, NRF filtration, Deltaic Model.


2004 ◽  
Vol 118 (2) ◽  
pp. 117-122 ◽  
Author(s):  
P. E. Campbell ◽  
C. M. Harris ◽  
S. Hendricks ◽  
T. Sirimanna

The contribution of air conduction auditory brainstem response (AC-ABR) testing in the paediatric population is widely accepted in clinical audiology. However, this does not allow for differentiation between conductive and sensorineural hearing loss. The purpose ofthis paper is to review the role of bone conduction auditory brainstem responses (BC-ABR). It is argued that despite such technical difficulties as a narrow dynamic range, masking dilemmas, stimulus artifact and low frequency underestimation of hearing loss, considerable evidence exists to suggest that BC-ABR testing provides an important contribution in the accurate assessmentof hearing loss in infants. Modification of the BC-ABR protocol is discussed and the technical difficulties that may arise are addressed, permitting BC-ABR to be used as a tool in the differential diagnosis between conductive and sensorineural hearing. Two relevant case studies are presented to highlight the growing importance of appropriate management in early identification of hearing loss. It can be concluded that BC-ABR should be adopted as a routine clinical diagnostic tool.


2003 ◽  
Vol 163 (4) ◽  
pp. 715-721 ◽  
Author(s):  
Dermott W. O'Callaghan ◽  
Alexei V. Tepikin ◽  
Robert D. Burgoyne

Hippocalcin is a neuronal calcium sensor protein that possesses a Ca2+/myristoyl switch allowing it to translocate to membranes. Translocation of hippocalcin in response to increased cytosolic [Ca2+] was examined in HeLa cells expressing hippocalcin–enhanced yellow fluorescent protein (EYFP) to determine the dynamics and Ca2+ affinity of the Ca2+/myristoyl switch in living cells. Ca2+-free hippocalcin was freely diffusible, as shown by photobleaching and use of a photoactivable GFP construct. The translocation was dependent on binding of Ca2+ by EF-hands 2 and 3. Using photolysis of NP-EGTA, the maximal kinetics of translocation was determined (t1/2 = 0.9 s), and this was consistent with a diffusion driven process. Low intensity photolysis of NP-EGTA produced a slow [Ca2+] ramp and revealed that translocation of hippocalcin–EYFP initiated at around 180 nM and was half maximal at 290 nM. Histamine induced a reversible translocation of hippocalcin–EYFP. The data show that hippocalcin is a sensitive Ca2+ sensor capable of responding to increases in intracellular Ca2+ concentration over the narrow dynamic range of 200–800 nM free Ca2+.


Sign in / Sign up

Export Citation Format

Share Document