Psychrophiles

2022 ◽  
pp. 94-122
Author(s):  
Shreyas Anantray Bhatt

Life on the Earth has evolved in the cold environments. Such cold habitats pose special challenges to the microbes in cold ecosystems, such as minimum metabolic activities, very limited nutrient availability, and often extreme conditions such as pH and salinity apart from temperature. Microbial communities surviving under these extreme conditions must have evolved complex structural and functional adaptations. Prokaryotic adaptations to cold environments are through physiological adaptations by increasing membrane fluidity through large amount of unsaturated fatty acids. These microbes also possess some cold adapted proteins whose steady state levels are maintained. They also produce certain compounds such as polyamines, sugars, polyols, amino acids, and some antifreeze proteins to protect themselves under freezing conditions. They also produce exopolymeric substances that promote adhesion of microbes to moist surfaces to induce biofilm formation which helps getting nutrients and protect the cells from harsh conditions. Antioxidants help destroying toxic reactive oxygen species.

2021 ◽  
Author(s):  
Yang XUAN ◽  
Mingo YUNG ◽  
Fushun Chen ◽  
Huogang WANG ◽  
Wai-Sun CHAN ◽  
...  

Abstract Malignant ascites in peritoneal metastases is a lipid-enriched microenvironment and is frequently involved in the poor prognosis of epithelial ovarian cancer (EOC). However, the detailed mechanisms underlying ovarian cancer (OvCa) cells dictating their lipid metabolic activities in promoting tumor progression remain elusive. Here, we report that two critical fatty acid desaturases, stearoyl-CoA desaturase-1 (SCD1) and acyl-CoA 6-desaturase (FADS2), are aberrantly upregulated, accelerating lipid metabolic activities and tumor aggressiveness of ascites-derived OvCa cells. Lipidomic analysis revealed that the elevation of unsaturated fatty acids (UFAs) is positively associated with SCD1/FADS2 levels and the oncogenic capacities of OvCa cells. In contrast, pharmaceutical inhibition and genetic ablation of SCD1/FADS2 retarded tumor growth, suppressed cancer stem cell (CSC) formation and reduced platinum resistance in OvCa cells. Mechanistically, inhibition of SCD1/FADS2 directly downregulated GPX4 and the GSH/GSSG ratio, causing disruption of the cellular redox balance and subsequent iron-mediated lipid peroxidation in ascites-derived OvCa cells. Hence, combinational treatment with SCD1/FADS2 inhibitors and cisplatin synergistically repressed tumor cell dissemination, providing a promising chemotherapeutic strategy against EOC platinum resistance and peritoneal metastases.


Hydrobiologia ◽  
2020 ◽  
Vol 848 (1) ◽  
pp. 157-176 ◽  
Author(s):  
Judit Padisák ◽  
Luigi Naselli-Flores

AbstractThere is hardly any sunshine exposed surface on this Earth, be it water or terrain, which would not support some biota. Still, many habitats offer harsh conditions requiring specialized physiological adaptations to survive. These environments are referred to as extremes; often inhabited by extremophilic organisms. In this review, characteristic species and assemblage properties of phytoplankton inhabiting extreme environments (especially lakes and pools where planktic life is potentially possible and independently of their origin) in terms of alkalinity, acidity, DOC, salinity, temperature, light and mixing regime will be outlined. Lakes characterized by more than a single extreme are common (e.g. saline + alkaline; acidic + high DOC + high metal content + low light). At the edge of extremes (e.g. pH of 1; salinity over ~ 100–150 g l−1) single species with appropriate physiological adaptation are selected and the phytoplankton is often dominated by a single species (monodominant) setting compositional diversity to zero. Under less extreme conditions permanent equilibria may persist; in many cases over several years in contrast to „average” lakes where equilibria are rare and ephemeral. Food webs depending on „extreme phytoplankton” are often atypical for example because the microbial loop is of prior importance or because birds are top predators.


2019 ◽  
Vol 18 (05) ◽  
pp. 416-419 ◽  
Author(s):  
Sven Thatje ◽  
Alastair Brown ◽  
Claus-Dieter Hillenbrand

AbstractAbout 400 subglacial lakes are known from Antarctica. The question of whether life unique of subglacial lakes exists has been paramount since their discovery. Despite frequent evidence of microbial life mostly from accretion ice, subglacial lakes are characterized by physiologically hostile conditions to metazoan life, as we know it. Pure water (salinity ≤0.4–1.2%), extreme cold (−3°C), high hydrostatic pressure, areas of limited or no oxygen availability and permanent darkness altogether require physiological adaptations to these harsh conditions. The record of gene sequences including some associated with hydrothermal vents does foster the idea of metazoan life in Lake Vostok. Here, we synthesize the physico-chemical environment surrounding sub-glacial lakes and potential sites of hydrothermal activity and advocate that the physico-chemical stability found at these sites may be the most likely sites for metazoan life to exist. The unique conditions presented by Lake Vostok may also offer an outlook on life to be expected in extra-terrestrial subglacial environments, such as on Jupiter's moon Europa or Saturn's moon Enceladus.


2016 ◽  
Vol 2 (8) ◽  
pp. e1600157 ◽  
Author(s):  
Toshimori Sekine ◽  
Norimasa Ozaki ◽  
Kohei Miyanishi ◽  
Yuto Asaumi ◽  
Tomoaki Kimura ◽  
...  

Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems.


Author(s):  
Khidmet Shikhaliev ◽  
Nadezhda Stolpovskaya ◽  
Michael Krysin ◽  
Anna Zorina ◽  
Denis Lyapun ◽  
...  

Oligo- and polyesters of polyglycerol and polyricinoleic acid are widely used as emulsifiers in various industries. Based on the condensation of glycerol and its oligomers with epoxidized derivatives of vegetable oils, new promising emulsifiers for oil-water systems were obtained. Complex structural and functional spectral analysis of synthesized substances showed that the main reactions leading to the formation of the desired products were the opening of epoxide cycles, the transesterification of esters and the condensation of fatty acid derivatives. The new combination of renewable raw materials is of undoubted interest for deeper vegetable oils chemical processing.


2006 ◽  
Vol 5 (2) ◽  
pp. 89-97 ◽  
Author(s):  
I.N. Reid ◽  
W.B. Sparks ◽  
S. Lubow ◽  
M. McGrath ◽  
M. Livio ◽  
...  

Cold environments are common throughout the Galaxy. We are conducting a series of experiments designed to probe the low-temperature limits for growth in selected methanogenic and halophilic Archaea. This paper presents initial results for two mesophiles, a methanogen, Methanosarcina acetivorans, and a halophile, Halobacterium sp. NRC-1, and for two Antarctic cold-adapted Archaea, a methanogen, Methanococcoides burtonii, and a halophile, Halorubrum lacusprofundi. Neither mesophile is active at temperatures below 5 °C, but both cold-adapted microorganisms show significant growth at sub-zero temperatures (−2 °C and −1 °C, respectively), extending previous low-temperature limits for both species by 4–5 °C. At low temperatures, both H. lacusprofundi and M. burtonii form multicellular aggregates, which appear to be embedded in extracellular polymeric substances. This is the first detection of this phenomenon in Antarctic species of Archaea at cold temperatures. The low-temperature limits for both psychrophilic species fall within the temperature range experienced on present-day Mars and could permit survival and growth, particularly in sub-surface environments. We also discuss the results of our experiments in the context of known exoplanet systems, several of which include planets that intersect the Habitable Zone. In most cases, those planets follow orbits with significant eccentricity, leading to substantial temperature excursions. However, a handful of the known gas giant exoplanets could potentially harbour habitable terrestrial moons.


2003 ◽  
Vol 185 (4) ◽  
pp. 1153-1160 ◽  
Author(s):  
Hideyuki Orikoshi ◽  
Nao Baba ◽  
Shigenari Nakayama ◽  
Hiroshi Kashu ◽  
Katsushiro Miyamoto ◽  
...  

ABSTRACT The chitinase B (ChiB) secreted by Alteromonas sp. strain O-7 was purified, and the corresponding gene (chiB) was cloned and sequenced. The open reading frame of the chiB gene encodes a protein of 850 amino acids with a calculated molecular mass of 90,223 Da. ChiB is a modular enzyme consisting of two reiterated domains and a catalytic domain belonging to chitinase family 18. The reiterated domains are composed of chitin-binding domain (ChtBD) type 3 and two fibronectin type III (Fn3)-like domains. Expression plasmids coding for ChiB or deletion derivatives thereof were constructed in Escherichia coli. Deletion analysis showed that the ChtBD of ChiB plays an important role in efficient hydrolysis of insoluble chitin. The optimum pH and temperature of ChiB were 6.0 and 30°C, respectively. The enzyme showed relatively high catalysis, even at low temperatures close to 0°C, and remarkable thermal lability compared to ChiA and ChiC, which are the mesophilic chitinases of the same strain. The k cat/K m value for the ChiB reaction at 10°C was about 4.7 times higher than that of ChiC. These results suggest that ChiB is a cold-adapted enzyme. The RNA transcript of chiB was induced by 1% GlcNAc, and along with a rise in temperature, the RNA transcript showed a tendency to decrease. Thus, among the ChiA, ChiB, and ChiC chitinases, production of ChiB may be advantageous for the strain, allowing it to easily acquire nutrients from chitin and to survive in cold environments.


2019 ◽  
Vol 95 (7) ◽  
Author(s):  
Angela Casillo ◽  
Ermenegilda Parrilli ◽  
Maria Luisa Tutino ◽  
Maria Michela Corsaro

ABSTRACTLipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Microorganisms that colonize permanently or transiently cold habitats have evolved an array of structural adaptations, some of which involve components of bacterial membranes. These adaptations assure the perfect functionality of the membrane even at freezing or sub-freezing growth temperatures. This review summarizes the state-of-the-art information concerning the structural features of the LPSs produced by cold-adapted bacteria. The LPS structure has recently been elucidated from species mainly belonging to Gammaproteobacteria and Flavobacteriaceae. Although the reported structural heterogeneity may arise from the phylogenetic diversity of the analyzed source strains, some generalized trends can be deduced. For instance, it is clear that only a small portion of LPSs displays the O-chain. In addition, the biological activity of the lipid A portion from several cold-adapted strains is reported.


2019 ◽  
Vol 7 (4) ◽  
pp. 107 ◽  
Author(s):  
Alvaro S. Villalobos ◽  
Jutta Wiese ◽  
Johannes F. Imhoff ◽  
Cristina Dorador ◽  
Alexander Keller ◽  
...  

Among the Microbacteriaceae the species of Subtercola and Agreia form closely associated clusters. Phylogenetic analysis demonstrated three major phylogenetic branches of these species. One of these branches contains the two psychrophilic species Subtercola frigoramans and Subtercola vilae, together with a larger number of isolates from various cold environments. Genomic evidence supports the separation of Agreia and Subtercola species. In order to gain insight into the ability of S. vilae to adapt to life in this extreme environment, we analyzed the genome with a particular focus on properties related to possible adaptation to a cold environment. General properties of the genome are presented, including carbon and energy metabolism, as well as secondary metabolite production. The repertoire of genes in the genome of S. vilae DB165T linked to adaptations to the harsh conditions found in Llullaillaco Volcano Lake includes several mechanisms to transcribe proteins under low temperatures, such as a high number of tRNAs and cold shock proteins. In addition, S. vilae DB165T is capable of producing a number of proteins to cope with oxidative stress, which is of particular relevance at low temperature environments, in which reactive oxygen species are more abundant. Most important, it obtains capacities to produce cryo-protectants, and to combat against ice crystal formation, it produces ice-binding proteins. Two new ice-binding proteins were identified which are unique to S. vilae DB165T. These results indicate that S. vilae has the capacity to employ different mechanisms to live under the extreme and cold conditions prevalent in Llullaillaco Volcano Lake.


Biologia ◽  
2016 ◽  
Vol 71 (8) ◽  
Author(s):  
Shamik Dasgupta

AbstractEvolution of early eukaryotes in the primitive Earth relied heavily on the origin and evolution of mitochondria. Understanding the structure and origin of mitochondria has a germane relation to understanding origin and evolution of eukaryotes. In light of the extreme conditions and the then existing Proterozoic ocean chemistry, eukaryotic cells developed adaptive adjustments for energy management. Apart from mitochondria, more reduced homologues like hydrogenosomes and mitosomes facilitated the metabolic activities of such eukaryotic life. In this short review, I highlight the importance of mitochondria in pushing eukaryotes to the peak of the evolutionary pyramid. Our knowledge has expanded but studying recent eukaryotic extremophiles and mitochondrial genomics in more details will enable us to estimate the position of the mitochondrial clock, understand its role better, and possibly find new eukaryotic lineages.


Sign in / Sign up

Export Citation Format

Share Document