scholarly journals FEATURES FORMATION ZONE OF WAVES AND BURSTS ON THE SURFACE LADLE BATH

Author(s):  
Е. Sigarev ◽  
G. Kryachko ◽  
A. Dovzhenko ◽  
Yu. Lobanov ◽  
A. Pohvalitiy

The results studies influence physicochemical properties and thickness cover slag, formed during ladle desulfurization pig iron by blowing a mixture of lime and magnesium, features formation a breaker on the surface bath and the level of metal losses with emissions outside ladle from this zone are presented. The necessity creating conditions for ensuring height breaker, which would not exceed thickness slag layer on the surface bath, has been substantiated. Using results of the high-temperature simulation blowing the cast iron melt with a neutral gas supplied through the nozzles tips stationary and rotating submersible lances, features development of counter waves and metal splashes in the absence and during formation slag cover with thickness of 30—80 mm on the surface bath are determined. The features change in the height and area breakers are determined depending on the gas flow rate for blowing bath and thickness slag. Based on the analysis results low-temperature modeling bath blowing, scientific ideas about the combined effect of the bath blowing intensity, speed of rotation submerged lance and thickness slag layer on the diameter bubbling zone, gas saturation of the bath and features wave formation on its surface in the slag-free zone were further developed (so-called «eye»). The nature relationship between length of the gas jet from lance nozzle, diameter «eye», and geometric parameters breaker has been established. It is shown that dependence profile breaker on speed of rotation lance and thickness slag layer is nonlinear. So, blowing bath through tip of a rotating lance with one nozzle at 240 rpm. with a gas flow rate of 2.2 l/min. creates conditions for raising top breaker to a height that is 33 % higher than the current thickness slag layer and contributes to the intensification formation of waves and bursts on the surface bath. With a decrease in the gas flow rate to 1.0 l/min., Under other unchanged conditions, height breaker is already 2/3 of the height slag layer, and as thickness slag decreases proportionally decreases. The smallest, recorded in the experiments, relative height breaker was 33.3% of the slag thickness at a lance rotation speed in the range of 90—120 rpm. Mathematical models are proposed that are suitable for calculating height breakers depending on the thickness slag layer, speed of rotation lance and intensity of gas injection into the bath. Taking into account established mutually opposite effect thickness of the cover slag layer and speed of rotation submerged lance on the «eye» area and height of the breaker, it is advisable to continue search for ways to improve design tip submerged lance and slag mode of ladle desulfurization.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 555 ◽  
Author(s):  
Luis E. Jardón-Pérez ◽  
Daniel R. González-Morales ◽  
Gerardo Trápaga ◽  
Carlos González-Rivera ◽  
Marco A. Ramírez-Argáez

In this work, the effects of equal (50%/50%) or differentiated (75%/25%) gas flow ratio, gas flow rate, and slag thickness on mixing time and open eye area were studied in a physical model of a gas stirred ladle with dual plugs separated by an angle of 180°. The effect of the variables under study was determined using a two-level factorial design. Particle image velocimetry (PIV) was used to establish, through the analysis of the flow patterns and turbulence kinetic energy contours, the effect of the studied variables on the hydrodynamics of the system. Results revealed that differentiated injection ratio significantly changes the flow structure and greatly influences the behavior of the system regarding mixing time and open eye area. The Pareto front of the optimized results on both mixing time and open eye area was obtained through a multi-objective optimization using a genetic algorithm (NSGA-II). The results are conclusive in that the ladle must be operated using differentiated flow ratio for optimal performance.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 917
Author(s):  
Luis E. Jardón-Pérez ◽  
Carlos González-Rivera ◽  
Marco A. Ramirez-Argaez ◽  
Abhishek Dutta

Ladle refining plays a crucial role in the steelmaking process, in which a gas stream is bubbled through molten steel to improve the rate of removal of impurities and enhance the transport phenomena that occur in a metallurgical reactor. In this study, the effect of dual gas injection using equal (50%:50%) and differentiated (75%:25%) flows was studied through numerical modeling, using computational fluid dynamics (CFD). The effect of gas flow rate and slag thickness on mixing time and slag eye area were studied numerically and compared with the physical model. The numerical model agrees with the physical model, showing that for optimal performance the ladle must be operated using differentiated flows. Although the numerical model can predict well the hydrodynamic behavior (velocity and turbulent kinetic energy) of the ladle, there is a deviation from the experimental mixing time when using both equal and differentiated gas injection at a high gas flow rate and a high slag thickness. This is probably due to the insufficient capture of the velocity field near the water–oil (steel–slag) interface and slag emulsification by the numerical model, as well as the complicated nature of correctly simulating the interaction between both gas plumes.


2012 ◽  
Vol 1373 ◽  
Author(s):  
Adrián M. Amaro-Villeda ◽  
Jorge A. González Bello ◽  
Marco A. Ramírez-Argáez.

ABSTRACTA 1/6th gas–stirred water physical model of a 140 ton steel ladle is used to evaluate mixing in air–water and air–water–oil systems to model argon–steel and argon–steel–slag systems respectively. Thickness of the slag layer is kept constant at 0.004 m. The effect of the gas flow rate (7, 17, and 37 l/min), plug position (0, 1/3, ½, and 2/3 of the ladle radius, R), and number of plugs (1, 2, and 3) on mixing time is also analyzed in this work. Gas is injected at the bottom of the ladle under several plug configurations varying both position and number of plugs. Chemical uniformity of 95% is selected as mixing criterion. Mixing times are experimentally determined when a tracer is suddenly injected into the ladle and the model is instrumented with a pH meter to track the time evolution of the tracer concentration (NaOH 1 M solution) in a given location inside the ladle. Process conditions for best mixing in both water–gas and water-gas–slag systems are: a single plug located at 2/3 of the ladle radius with a gas flow rate of 17 l/min.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


1998 ◽  
Vol 63 (6) ◽  
pp. 881-898
Author(s):  
Otakar Trnka ◽  
Miloslav Hartman

Three simple computational techniques are proposed and employed to demonstrate the effect of fluctuating flow rate of feed on the behaviour and performance of an isothermal, continuous stirred tank reactor (CSTR). A fluidized bed reactor (FBR), in which a non-catalytic gas-solid reaction occurs, is also considered. The influence of amplitude and frequency of gas flow rate fluctuations on reactant concentrations at the exit of the CSTR is shown in four different situations.


Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


Sign in / Sign up

Export Citation Format

Share Document