Verification of DLS Data by LVP in Case of Marginal Failure

Author(s):  
Keonil Kim ◽  
Sungjin Kim ◽  
Kunjae Lee ◽  
Kyeongju Jin ◽  
Yunwoo Lee ◽  
...  

Abstract In most of the non-destructive electrical fault isolation cases, techniques such as DLS, Photon Emission, LIT, OBIRCH indicate a fault location directly. But relying on just one of these techniques for marginal failure mechanism is not enough for better fault localization. When Failure Analysis (FA) engineers encounter high NDF (No Defect Found) rates, by using only one of the techniques, they may need to consider the relationship between the responded locations by different techniques and fail phenomenon for better defect isolation. This paper talks about how a responded DLS location does not always indicate a fault location and how LVP data collected using DLS location can pin point the real defect location.

Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
Kuo Hsiung Chen ◽  
Wen Sheng Wu ◽  
Yu Hsiang Shu ◽  
Jian Chan Lin

Abstract IR-OBIRCH (Infrared Ray – Optical Beam Induced Resistance Change) is one of the main failure analysis techniques [1] [2] [3] [4]. It is a useful tool to do fault localization on leakage failure cases such as poor Via or contact connection, FEoL or BEoL pattern bridge, and etc. But the real failure sites associated with the above failure mechanisms are not always found at the OBIRCH spot locations. Sometimes the real failure site is far away from the OBIRCH spot and it will result in inconclusive PFA Analysis. Finding the real failure site is what matters the most for fault localization detection. In this paper, we will introduce one case using deep sub-micron process generation which suffers serious high Isb current at wafer donut region. In this case study a BEoL Via poor connection is found far away from the OBIRCH spots. This implies that layout tracing skill and relation investigation among OBIRCH spots are needed for successful failure analysis.


Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


Author(s):  
Michael B. Schmidt ◽  
Noor Jehan Saujauddin

Abstract Scan testing and passive voltage contrast (PVC) techniques have been widely used as failure analysis fault isolation tools. Scan diagnosis can narrow a failure to a given net and passive voltage contrast can give real-time, large-scale electronic information about a sample at various stages of deprocessing. In the highly competitive and challenging environment of today, failure analysis cycle time is very important. By combining scan FA with a much higher sensitivity passive voltage contrast technique, one can quickly find defects that have traditionally posed a great challenge.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


Author(s):  
Gwee Hoon Yen ◽  
Ng Kiong Kay

Abstract Today, failure analysis involving flip chip [1] with copper pillar bump packaging technologies would be the major challenges faced by analysts. Most often, handling on the chips after destructive chemical decapsulation is extremely critical as there are several failure analysis steps to be continued such as chip level fault localization, chip micro probing for fault isolation, parallel lapping [2, 3, 4] and passive voltage contrast. Therefore, quality of sample preparation is critical. This paper discussed and demonstrated a quick, reliable and cost effective methodology to decapsulate the thin small leadless (TSLP) flip chip package with copper pillar (CuP) bump interconnect technology.


Author(s):  
Chris Eddleman ◽  
Nagesh Tamarapalli ◽  
Wu-Tung Cheng

Abstract Yield analysis of sub-micron devices is an ever-increasing challenge. The difficulty is compounded by the lack of in-line inspection data as many companies adopt foundry or fab-less models for acquiring wafers. In this scenario, failure analysis is increasingly critical to help drive yields. Failure analysis is a process of fault isolation, or a method of isolating failures as precisely as possible followed by identification of a physical defect. As the number of transistors and metal layers increase, traditional fault isolation techniques are less successful at isolating a cause of failures. Costs are increasing due to the amount of time needed to locate the physical defect. One solution to the yield analysis problem is scan diagnosis based fault isolation. Previous scan diagnosis based techniques were limited with little information about the type of fault and confidence of diagnosis. With new scan diagnosis algorithms it is now possible to not only isolate, but to identify the type of fault as well as assigning a confidence ranking prior to any destructive analysis. This paper presents multiple case studies illustrating the application of scan diagnosis as an effective means to achieve yield enhancement. The advanced scan diagnostic tool used in this study provides information about the fault type as well as fault location. This information focuses failure analysis efforts toward a suspected defect, decreasing the cycle time required to determine root cause, as well as increasing the over all success rate.


Author(s):  
Teoh King Long ◽  
Ko Yin Fern

Abstract In time domain reflectometry (TDR), the main emphasis lies on the reflected waveform. Poor probing contact is one of the common problems in getting an accurate waveform. TDR probe normalization is essential before measuring any TDR waveforms. The advantages of normalization include removal of test setup errors in the original test pulse and the establishment of a measurement reference plane. This article presents two case histories. The first case is about a Plastic Ball Grid Array package consisting of 352 solder balls where the open failure mode was encountered at various terminals after reliability assessment. In the second, a three-digit display LED suspected of an electrical short failure was analyzed using TDR as a fault isolation tool. TDR has been successfully used to perform non-destructive fault isolation in assisting the routine failure analysis of open and short failure. It is shown to be accurate and reduces the time needed to identify fault locations.


Author(s):  
Gil Garteiz ◽  
Javeck Verdugo ◽  
David Aveline ◽  
Eric Williams ◽  
Arvid Croonquist ◽  
...  

Abstract In this paper, a failure analysis case study on a custom-built vacuum enclosure is presented. The enclosure’s unique construction and project requirement to preserve the maximum number of units for potential future use in space necessitated a fluorocarbon liquid bath for fault isolation and meticulous sample preparation to preserve the failure mechanism during failure analysis.


Author(s):  
Ankush Oberai ◽  
Jiann-Shiun Yuan

Abstract The work presented here is related to the utilization of computer aided design (CAD) Navigation tools in combination with images from Emission Microscope (EMMI) to improve the accuracy and efficiency of Failure Analysis. The paper presents the flow to quickly identify the failing device by taking the photon emission microscope image and CAD data as input. EMMI is used extensively for detecting leakage current resulting from device defects, e.g., gate oxide defects/ leakage, latch-up, electrostatic discharge (ESD) failure, junction leakage, etc. This emitted light is captured as hotspots on the image. A typical photon emission microscope image has a series of photon emission spots initiated by one physical defect. Not all emission spots may be defects; for example, emissions are shown during normal saturation or switching mode of the transistor. This results in multiple connectivity path between these spots which failure analysis (FA) engineer may want to analyze. The FA engineer wants to detect the one failed device which causes multiple other devices to show false hotspots. The work presented in this paper involves identifying all the devices beneath the hotspot areas, processing the connectivity of the found devices and extracting the schematic for all the devices beneath these hotspots. The connectivity between the devices could be direct connections through nets or indirect through “transmission gates”. The extracted schematic helps the FA engineer focus the FA work on critical devices such as a driver and enables faster and more accurate fault localization. The work in the paper shows the extraction of critical path of devices and their connectivity.


Sign in / Sign up

Export Citation Format

Share Document