scholarly journals DESIGN OF UNIVERSAL CONTROL SYSTEM FOR H-BRIDGE MULTILEVEL CONVERTER

Author(s):  
Andrey Chepiga ◽  
Aleksey Anuchin

The medium voltage frequency converters mostly utilize the low-voltage multi-cell topology. However, available PWM techniques have some drawbacks, such as time delayed operation, which limits current loop response time, need reinitialization of the PWM carriers in case of cell failure, or have unequal distribution of losses. To solve the set of these problems the PWM strategy, which utilize PWM in a single cell with sequential cell switching, was introduced. This PWM strategy can operate in case of partial inverter failures, provides maximum available voltage to the load and has low response time due to operation at high PWM frequency of a single cell, while the average switching frequency is limited. The proposed PWM technique was examined using a model, where the switching losses distribution and high quality of the output voltage were confirmed.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1738
Author(s):  
Vanessa Neves Höpner ◽  
Volmir Eugênio Wilhelm

The use of static frequency converters, which have a high switching frequency, generates voltage pulses with a high rate of change over time. In combination with cable and motor impedance, this generates repetitive overvoltage at the motor terminals, influencing the occurrence of partial discharges between conductors, causing degradation of the insulation of electric motors. Understanding the effects resulting from the frequency converter–electric motor interaction is essential for developing and implementing insulation systems with characteristics that support the most diverse applications, have an operating life under economically viable conditions, and promote energy efficiency. With this objective, a search was carried out in three recognized databases. Duplicate articles were eliminated, resulting in 1069 articles, which were systematically categorized and reviewed, resulting in 481 articles discussing the causes of degradation in the insulation of electric motors powered by frequency converters. A bibliographic portfolio was built and evaluated, with 230 articles that present results on the factors that can be used in estimating the life span of electric motor insulation. In this structure, the historical evolution of the collected information, the authors who conducted the most research on the theme, and the relevance of the knowledge presented in the works were considered.


Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 134 ◽  
Author(s):  
Muhammad Ali ◽  
Muhammad Khan ◽  
Jianming Xu ◽  
Muhammad Faiz ◽  
Yaqoob Ali ◽  
...  

This paper presents a comparative analysis of a new topology based on an asymmetric hybrid modular multilevel converter (AHMMC) with recently proposed multilevel converter topologies. The analysis is based on various parameters for medium voltage-high power electric traction system. Among recently proposed topologies, few converters have been analysed through simulation results. In addition, the study investigates AHMMC converter which is a cascade arrangement of H-bridge with five-level cascaded converter module (FCCM) in more detail. The key features of the proposed AHMMC includes: reduced switch losses by minimizing the switching frequency as well as the components count, and improved power factor with minimum harmonic distortion. Extensive simulation results and low voltage laboratory prototype validates the working principle of the proposed converter topology. Furthermore, the paper concludes with the comparison factors evaluation of the discussed converter topologies for medium voltage traction applications.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1093
Author(s):  
Shimi Sudha Letha ◽  
Angela Espin Delgado ◽  
Sarah K. Rönnberg ◽  
Math H. J. Bollen

Power converters with high switching frequency used to integrate renewable power sources to medium and low voltage networks are sources of emission in the supraharmonic range (2 to 150 kHz). When such converters are connected to a medium voltage (MV) network these supraharmonics propagate through the MV network and can impact network and customer equipment over a wide range. This paper evaluates an existing Swedish MV electrical network and studies the pattern of supraharmonic resonance and the propagation of supraharmonics. The MV network consists of eight feeders including a small wind farm. Simulations reveal that, the bigger the MV network, the more resonant frequencies, but also the lower the amplitude of the resonance peaks in the driving point impedance. It was also identified that for short feeders as length increases, the magnitude of the transfer impedance at supraharmonic frequency decreases. For further increment in feeder length, the magnitude increases or becomes almost constant. For very long feeders, the transfer impedance further starts decreasing. The eight feeders in the network under study are similar but show completely different impedance versus frequency characteristics. Measurements at the MV side of the wind farm show time varying emissions in the supraharmonic range during low power production. The impact of these emissions coupled with system resonance is examined.


2011 ◽  
Vol 59 (4) ◽  
pp. 513-523 ◽  
Author(s):  
R. Smoleński ◽  
M. Jarnut ◽  
G. Benysek ◽  
A. Kempski

CM voltage compensation in AC/DC/AC interfaces for smart grids In this paper the results of research connected with common mode (CM) interference generated by four-quadrant frequency converters and effective methods of CM voltage compensation are presented. The obtained results show that conducted CM interference generated by these converters in a low voltage (LV) grid can be transferred by means of parasitic couplings into a medium voltage (MV) network and can be observed at distant points under overhead MV lines. The compensation of the CM voltage sources on both the input and the output sides of the AC/DC/AC converter using proposed arrangement of compensators significantly reduces unwanted, EMC related, side effects accompanying the application of AC/DC/AC interfaces in Smart Grids.


2011 ◽  
Vol 679-680 ◽  
pp. 587-590 ◽  
Author(s):  
Fanny Björk ◽  
Michael Treu ◽  
Jochen Hilsenbeck ◽  
M.A. Kutschak ◽  
Daniel Domes ◽  
...  

A 1200 V SiC JFET has been demonstrated to achieve ultra-low switching losses ten times lower than for industrial grade 1200V Si IGBT. The low switching losses are also shown to compete with the fastest 600V class MOSFET in the market, yielding 1.1% higher PFC stage efficiency for 340 kHz switching frequency, when same device on-resistances were measured. The proposed normally-on JFET also differentiates over the IGBT by its purely Ohmic output characteristics without any voltage threshold, and by a monolithically integrated body diode with practically zero reverse recovery. In this paper we outline as well how the other pre-requisites for a 1200 V SiC switch in applications such as photovoltaic systems and UPS can be fulfilled by the proposed JFET solution: long-term reliability, product cost optimization by low specific on-resistance combined with reasonable process window expectations. Finally, a normally-off like safe operation behavior is ensured by a dedicated driving scheme utilizing a low-voltage Si MOSFET as protection device at system start-up and for system failure conditions.


Author(s):  
Benbouza Naima ◽  
Benfarhi Louiza ◽  
Azoui Boubekeur

Background: The improvement of the voltage in power lines and the respect of the low voltage distribution transformer substations constraints (Transformer utilization rate and Voltage drop) are possible by several means: reinforcement of conductor sections, installation of new MV / LV substations (Medium Voltage (MV), Low Voltage (LV)), etc. Methods: Connection of mini-photovoltaic systems (PV) to the network, or to consumers in underserved areas, is a well-adopted solution to solve the problem of voltage drop and lighten the substation transformer, and at the same time provide clean electrical energy. PV systems can therefore contribute to this solution since they produce energy at the deficit site. Results: This paper presents the improvement of transformer substation constraints, supplying an end of low voltage electrical line, by inserting photovoltaic systems at underserved subscribers. Conclusion: This study is applied to a typical load pattern, specified to the consumers region.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4144
Author(s):  
Yatai Ji ◽  
Paolo Giangrande ◽  
Vincenzo Madonna ◽  
Weiduo Zhao ◽  
Michael Galea

Transportation electrification has kept pushing low-voltage inverter-fed electrical machines to reach a higher power density while guaranteeing appropriate reliability levels. Methods commonly adopted to boost power density (i.e., higher current density, faster switching frequency for high speed, and higher DC link voltage) will unavoidably increase the stress to the insulation system which leads to a decrease in reliability. Thus, a trade-off is required between power density and reliability during the machine design. Currently, it is a challenging task to evaluate reliability during the design stage and the over-engineering approach is applied. To solve this problem, physics of failure (POF) is introduced and its feasibility for electrical machine (EM) design is discussed through reviewing past work on insulation investigation. Then the special focus is given to partial discharge (PD) whose occurrence means the end-of-life of low-voltage EMs. The PD-free design methodology based on understanding the physics of PD is presented to substitute the over-engineering approach. Finally, a comprehensive reliability-oriented design (ROD) approach adopting POF and PD-free design strategy is given as a potential solution for reliable and high-performance inverter-fed low-voltage EM design.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4133
Author(s):  
Alessandro Bosisio ◽  
Matteo Moncecchi ◽  
Andrea Morotti ◽  
Marco Merlo

Currently, distribution system operators (DSOs) are asked to operate distribution grids, managing the rise of the distributed generators (DGs), the rise of the load correlated to heat pump and e-mobility, etc. Nevertheless, they are asked to minimize investments in new sensors and telecommunication links and, consequently, several nodes of the grid are still not monitored and tele-controlled. At the same time, DSOs are asked to improve the network’s resilience, looking for a reduction in the frequency and impact of power outages caused by extreme weather events. The paper presents a machine learning GIS-based approach to estimate a secondary substation’s load profiles, even in those cases where monitoring sensors are not deployed. For this purpose, a large amount of data from different sources has been collected and integrated to describe secondary substation load profiles adequately. Based on real measurements of some secondary substations (medium-voltage to low-voltage interface) given by Unareti, the DSO of Milan, and georeferenced data gathered from open-source databases, unknown secondary substations load profiles are estimated. Three types of machine learning algorithms, regression tree, boosting, and random forest, as well as geographic information system (GIS) information, such as secondary substation locations, building area, types of occupants, etc., are considered to find the most effective approach.


Sign in / Sign up

Export Citation Format

Share Document