scholarly journals Insulin Downregulated the Infection of Uropathogenic Escherichia coli (UPEC) in Bladder Cells in a High-Glucose Environment through JAK/STAT Signaling Pathway

2021 ◽  
Vol 9 (12) ◽  
pp. 2421
Author(s):  
Chen-Hsun Ho ◽  
Shih-Ping Liu ◽  
Chia-Kwung Fan ◽  
Kai-Yi Tzou ◽  
Chia-Chang Wu ◽  
...  

Diabetic individuals have a higher incidence of urinary tract infection (UTI) than non-diabetic individuals, and also require longer treatment. We evaluated the effects of insulin pretreatment on the regulation of JAK/STAT transduction pathways in UPEC-infected bladder cells in a high-glucose environment. A bladder cell model with GFP-UPEC and fluorescent-labeled TLR4, STAT1, STAT3, and insulin receptor antibodies, was used to evaluate the relationship between insulin receptor signaling, TLR-4-mediated, and JAK/STAT-dependent pathways. Pretreatment with 20 and 40 µg/mL insulin for 24 h significantly and dose-dependently reduced UPEC infection in SV-HUC-1 cells. Additionally, the expression levels of STAT1 and STAT3 were downregulated in a dose-dependent manner. However, insulin receptor (IR) expression was not affected by insulin pretreatment. Our results showed that insulin-mediated reduction of UPEC infection in a high-glucose environment was not only due to the downregulation of JAK1/2 and phosphorylated STAT-1/3, but also because of the decreased expression of TLR-4 proteins and pro-inflammatory IL-6. Here, we demonstrated that insulin reduced not only UPEC infection in bladder epithelial cells, but also inhibited the JAK/STAT transduction pathway during infection in a high-glucose environment. This study provides evidence to support the use of insulin in the treatment of UPEC infection in patients with type 2 diabetes (T2D).

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2004 ◽  
Author(s):  
Mi Rim Lee ◽  
Ji Eun Kim ◽  
Jun Young Choi ◽  
Jin Ju Park ◽  
Hye Ryeong Kim ◽  
...  

Conflicting results for morusin activity during adipogenic differentiation are reported in 3T3-L1 adipocytes and cancer cells. To elucidate the influence of morusin on fat metabolism, their anti-obesity effects and molecular mechanism were investigated in 3T3-L1 cells and primary adipocytes. Morusin at a dose of less than 20 µM does not induce any significant change in the viability of 3T3-L1 adipocytes. The accumulation of intracellular lipid droplets in 3T3-L1 adipocytes stimulated with 0.5 mM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 10 µg/mL insulin in DMEM containing 10% FBS (MDI)-significantly reduces in a dose-dependent manner after morusin treatment. The phosphorylation level of members in the MAP kinase signaling pathway under the insulin receptor downstream also decrease significantly in the MDI + morusin-treated group compared to MDI + vehicle-treated group. Also, the expression of adipogenic transcription factors (PPARγ and C/EBPα) and lipogenic proteins (aP2 and FAS) are significantly attenuated by exposure to the compound in MDI-stimulated 3T3-L1 adipocytes. Furthermore, the decrease in the G0/G1 arrest of cell cycle after culturing in MDI medium was dramatically recovered after co-culturing in MDI + 20 µM morusin. Moreover, morusin treatment induces glycerol release in the primary adipocytes of SD rats and enhances lipolytic protein expression (HSL, ATGL, and perilipin) in differentiated 3T3-L1 adipocytes. Overall, the results of the present study provide strong evidence that morusin inhibits adipogenesis by regulating the insulin receptor signaling, cell cycle and adipogenic protein expression as well as stimulating lipolysis by enhancing glycerol release and lipolytic proteins expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuewen Wu ◽  
Li Zhang ◽  
Yihui Li ◽  
Wenjuan Zhang ◽  
Jianjun Wang ◽  
...  

AbstractMutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1−/− mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner’s membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ganiyu Oboh ◽  
Ayokunle O. Ademosun ◽  
Adedayo O. Ademiluyi ◽  
Olasunkanmi S. Omojokun ◽  
Esther E. Nwanna ◽  
...  

Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.


2021 ◽  
Vol 22 (16) ◽  
pp. 8864
Author(s):  
Hongxi Chen ◽  
Mohammad Amjad Hossain ◽  
Jong-Hoon Kim ◽  
Jae Youl Cho

Kahweol is a diterpene present in coffee. Until now, several studies have shown that kahweol has anti-inflammatory and anti-angiogenic functions. Due to the limited research available about skin protection, this study aims to discern the potential abilities of kahweol and the possible regulation targets. First, the cytotoxicity of kahweol was checked by 3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, while 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic acid) diammonium salt and 1-diphenyl-2-picryl-hydrazyl were used to examine the radical scavenging ability. Polymerase chain reaction analysis was performed to explore the proper time points and doses affecting skin hydration and barrier-related genes. Luciferase assay and Western blotting were used to explore the possible transcription factors. Finally, fludarabine (a STAT1 inhibitor) was chosen to discern the relationship between skin-moisturizing factors and STAT1. We found that HaCaT cells experienced no toxicity from kahweol, and kahweol displayed moderate radical scavenging ability. Moreover, kahweol increased the outcome of HAS1, HAS2, occludin, and TGM-1 from six hours in a dose-dependent manner as well as the activation of STAT1 from six hours. Additionally, kahweol recovered the suppression of HAS2, STAT1-mediated luciferase activity, and HA secretion, which was all downregulated by fludarabine. In this study, we demonstrated that kahweol promotes skin-moisturizing activities by upregulating STAT1.


1984 ◽  
Vol 223 (1) ◽  
pp. 39-46 ◽  
Author(s):  
D C DeSante ◽  
L Little ◽  
D E Peavy ◽  
F Vinicor

An improved non-perfusion method for the preparation of cultured foetal-rat hepatocytes is described. Digestion of the liver with collagenase and deoxyribonuclease I gave yields of 40 × 10(6) hepatocytes/g of liver. The plating efficiency of hepatocytes in medium with 10 microM-cortisol was 50%. Cell morphology and metabolism were maintained through 3 days of monolayer culture, with minimal contamination by haematopoietic cells or fibroblasts. The cultured cells bound and degraded 125I-insulin in a time- and dose-dependent manner. The estimated ED50 for competitive binding at 37 degrees C was 1.1 nM. Curvilinear Scatchard plots were observed, with estimates of 16 500 high-affinity sites (Kd = 813 pM) and 53 000 low-affinity sites (Kd = 23 nM) per cell. The cultured cells demonstrated a glycogenic response to insulin, with an estimated ED50 of 120 pM. The degree of glycogenic response to insulin varied with time in culture: 500% above basal on day 1, 200% on day 2, and only 150% on day 3. Cultured foetal cells also exhibited a time-dependent uptake of 2-aminoisobutyric acid, which, in contrast with previous reports with adult cells, was not stimulated by the presence of 10 nM-insulin. Cultured foetal hepatocytes may provide an interesting model with which to study the relationship between insulin-receptor binding and insulin action.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Serban Iren Andreea ◽  
Costache Marieta ◽  
Dinischiotu Anca

In the dermis, fibroblasts play an important role in the turnover of the dermal extracellular matrix. Collagen I and III, the most important dermal proteins of the extracellular matrix, are progressively altered during ageing and diabetes. For mimicking diabetic conditions, the cultured human dermal fibroblasts were incubated with increasing amounts of AGE-modified BSA andD-glucose for 24 hours. The expression of procollagenα2(I) and procollagenα1(III) mRNA was analyzed by quantitative real-time PCR. Our data revealed that the treatment of fibroblasts with AGE-modified BSA upregulated the expression of procollagenα2(I) and procollagenα1(III) mRNA in a dose-dependent manner. High glucose levels mildly induced a profibrogenic pattern, increasing the procollagenα2(I) mRNA expression whereas there was a downregulation tendency of procollagenα1(III) mRNA.


1989 ◽  
Vol 256 (5) ◽  
pp. E619-E623
Author(s):  
T. Yoshimura ◽  
J. Ishizuka ◽  
G. H. Greeley ◽  
J. C. Thompson

We have examined the effect of galanin infusion on glucose-stimulated release of insulin from the isolated perfused pancreas of the rat to better characterize the effect of galanin on the first and second phases of insulin release. The effects of galanin on insulin release stimulated by L-arginine or high concentrations of potassium were also examined. When perfusion of galanin was started 4 min before the start of perfusion of high glucose (16.7 mM), galanin (10(-8)-10(-11) M) inhibited both the first and second phases of insulin release in a dose-dependent manner. When perfusion of galanin (10(-8) or 10(-9) M) was started simultaneously with high glucose (16.7 mM), only the second phase of insulin release was suppressed (P less than 0.05). Galanin (10(-9) M) failed to inhibit insulin release stimulated by L-arginine (10 and 5 mM) or potassium (25 and 20 mM). These findings suggest that the inhibitory action of galanin on glucose-stimulated insulin release is exerted on early intracellular events that occur during the stimulation of insulin release and that are common to both phases. Because galanin does not inhibit insulin release stimulated by L-arginine or potassium, galanin may inhibit glucose-stimulated closure of potassium channels.


2005 ◽  
Vol 23 (22) ◽  
pp. 5235-5246 ◽  
Author(s):  
Román Peréz-Soler ◽  
Leonard Saltz

The human epidermal growth factor receptor (HER1/EGFR) is dysregulated in many solid tumors, making it an attractive target for anticancer therapy. A number of agents that target this receptor are in use or in development. A specific adverse effect common to this class of agent is a papulopustular rash, usually on the face and upper torso, which generally occurs in a dose-dependent manner. Little is known about the etiology of this rash, and there are no clear evidence-based management recommendations. Histologic data indicate that rash may be caused by HER1/EGFR inhibition in skin, although this has not been confirmed. Findings suggest that there is a relationship between the development of rash and response and/or survival, making rash a potential surrogate marker of activity. Data from multiple studies with cetuximab and erlotinib show a consistent relationship between rash and response, as well as between rash and survival. The relationship between rash and clinical outcome is currently less consistent for gefitinib. Some studies report a correlation, whereas others do not. The cause of the possible relationship between rash and clinical benefit remains unclear at this time, and additional studies are needed to determine the clinical utility of this observation.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaolu Qu ◽  
Leyan Yan ◽  
Rihong Guo ◽  
Hui Li ◽  
Zhendan Shi

LPS is a major endotoxin produced by gram-negative bacteria, and exposure to it commonly occurs in animal husbandry. Previous studies have shown that LPS infection disturbs steroidogenesis, including progesterone production, and subsequently decreases animal reproductive performance. However, little information about the underlying mechanisms is available thus far. In the present study, an in vitro-luteinized porcine granulosa cell model was used to study the underlying molecular mechanisms of LPS treatment. We found that LPS significantly inhibits progesterone production and downregulates the expressions of progesterone synthesis-associated genes (StAR, CYP11A1, and 3β-HSD). Furthermore, the levels of ROS were significantly increased in an LPS dose-dependent manner. Moreover, transcriptional factors GATA4 and GATA6, but not NR5A1, were significantly downregulated. Elimination of LPS-stimulated ROS by melatonin or vitamin C could restore the expressions of GATA4, GATA6, and StAR. In parallel, StAR expression was also inhibited by the knockdown of GATA4 and GATA6. Based on these data, we conclude that LPS impairs StAR expression via the ROS-induced downregulation of GATA4 and GATA6. Collectively, these findings provide new insights into the understanding of reproductive losses in animals suffering from bacterial infection and LPS exposure.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
So Ra Kim ◽  
Dae-Hoon Kim ◽  
Soo Hyun Park ◽  
Young Seok Kim ◽  
Chun Hwa Kim ◽  
...  

G-protein coupled receptor 119 (GPR119) has emerged as a promising new target for the treatment of type 2 diabetes mellitus. The expression of GPR119 on the pancreatic B cells and intestinal L cells provides a unique opportunity for a single drug to promote insulin and GLP-1 secretion. In this study, we identified a novel small molecule GPR119 agonist, HD0471953, from our large library of synthetic compounds based on its ability to anti-hyperglycemic effects on T2DM murine models. We have tested the acute efficacy of HD0471953 by the oral glucose tolerance test (OGTT) with normal C57BL/6J mice. Then, chronic administrations of HD0471953 were performed to evaluate the efficacy on various diabetic rodent models. Single administration of HD0471953 showed improved glycemic control with a dose-dependent manner in OGTT with normal mice, and the insulin and GLP-1 were also increased. To identify chronic efficacy, we have observed a decline of blood glucose and fasting insulin in a dose-dependent manner of 10, 20, and 50 mpk indb/dbmice. The results suggest that HD0471953 may be a potentially promising anti-hyperglycemic agent for the treatment of patients with type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document