scholarly journals Mapping of QTL Associated With Heat Tolerance At The Reproductive Stage In Rice(Oryza Sativa L.)

Author(s):  
Liu Jin ◽  
Xiaoding Ma ◽  
Huiying Zhou ◽  
Shuhui Li ◽  
Di Cui ◽  
...  

Abstract Climate change has a negative effect on rice production and food security. High temperature stress is a major obstacle and can significantly reduce yield. A set of recombinant inbred lines (RILs) derived from the cross between Longdao5 (heat-sensitive) and Zhongyouzao8 (heat-tolerant) was used in the identification of heat tolerant QTL. Spikelet fertility (SF) and heat tolerance (HT) indexes showed a significant difference among the parents and RILs population, and SF and HT have different of effect under natural and artificial high temperature conditions. Sixty-one QTLs were detected on chromosomes 1-8, 10 and 12, while 25, 27 and 14 additive QTLs were identified under the control, natural and artificial high temperature conditions, respectively. Pleiotropic effects and QTL hotspots are the key factors affecting these traits, three key major QTL clusters qHTSF1, qHTSF4, and qHTSF12 can be stably expressed. In addition, epistatic effect is an important component in the regulation of heat tolerance. A total of 17 pairs of epistatic interaction loci were detected, and these additive QTL clusters have a significant epistatic effect. Bulk segregant analysis (BSA) method was proved to be a convenient method to detect major QTLs. Three QTLs, namely qSF1, qSF2 and qSF12 were detected under high temperature environment, and there is a highly significant correlation among these addictive QTLs. These results will lay the foundation for the further fine mapping of these major QTLs and enrich the molecular marker-assisted selection of heat-tolerant gene resources in rice breeding.

Author(s):  
V. Jaldhani ◽  
D. Sanjeeva Rao ◽  
P. Beulah ◽  
B. Srikanth ◽  
P. R. Rao ◽  
...  

Aims: To assess heat-induced PSII damage and efficiency in eight promising backcross introgression lines (BC2F6) of KMR-3R/N22 possessing qHTSF1.1 and qHTSF4.1. Study Design:  Randomized Complete Block Design (RCBD) with three replications. Place and Duration of Study: ICAR-Indian Institute of Rice Research, Hyderabad India during wet/rainy (Kharif) season 2018. Methodology: Eight ILs (BC2F6) and parents were evaluated for heat tolerance. The high- temperature stress was imposed by enclosing the crop with a poly cover tent (Polyhouse) just before the anthesis stage. The fluorescence parameters viz., maximum efficiency of PSII photochemistry (Fv/Fm), Electron transport rate (ETR), effective PSII quantum yield (ΦPSII), coefficient of photochemical quenching (qP) and coefficient of non-photochemical quenching (qN) were measured under ambient and high-temperature stress. Results: The heat-tolerance potential of ILs was assessed in terms of PSII activity. The results indicated that significant differences were observed between treatments (T), genotypes (G) and the interaction between T × G.  The physiological basis of introgressed QTLs controls the spikelet fertility by maintaining the productive and adaptive strategies in heat-tolerant QTL introgressed lines with stable photosynthetic apparatus (PSII) under high-temperature stress. Conclusion: The Fv/Fm ratio denotes the maximum quantum yield of PSII. The heat-tolerant QTL introgressed lines exhibited stable photosynthetic apparatus (PSII) and noted better performance under high-temperature stress. They may be used as donors for fluorescence traits in breeding rice for high-temperature tolerance.


Author(s):  
Syed Bilal Hussain ◽  
Ali Bakhsh ◽  
Muhammad Zubair

A comparison was made of the physiological and morphological differences between Inqlab-91 (hexaploid) and Langdon (tetralpoid) wheat genotypes in response to high temperature stress applied at third leaf stage of growth. Electrolytes leakage technique was used to detect differences in the heat sensitivities of leaves of Inqlab-91 and Langdon. This method showed that at both 35 or 40°C Inqlab-91 was more heat tolerant than Langdon.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


2021 ◽  
Author(s):  
Changrong Ye ◽  
Tsutomu Ishimaru ◽  
Leslie Lambio ◽  
Le Li ◽  
Yu Long ◽  
...  

Abstract High temperature at flowering stage of rice causes low spikelet fertility and low yield. To cope with high temperature stress brought by climate change, two strategies were proposed to develop heat-resilient rice varieties. One is to escape the high temperature by flowering early in the morning, another is to enhance tolerance to high temperature stress per se. Two promising QTLs for early morning flowering (qEMF3) and heat tolerance (qHTSF4.1) were introgressed into IR64 background, and near isogenic lines (NILs) IR64+qEMF3 (IR64EMF3) and IR64+qHTSF4.1 (IR64HT4) were developed in previous studies. In this study, a QTL pyramiding line IR64+qHTSF4.1+qEMF3 (IR64HT4EMF3) was developed by marker assisted selection of the progenies of previous NILs. The NILs were subjected to different high temperature regimes in the indoor growth chambers and different locations in the field. In the indoor growth chambers, when high temperature starts early (before 11:00 am), IR64HT4 and IR64HT4EMF3 had higher spikelet fertility than IR64EMF3; when high temperature comes later (after 11:00 am), IR64EMF3 and IR64HT4EMF3 had higher spikelet fertility than IR64HT4. The flowering pattern of the IR64HT4EMF3 was earlier than IR64HT4, but similar to IR64EMF3 in the glasshouse, field and indoor growth chambers. IR64HT4EMF3 showed higher spikelet fertility than IR64EMF3 and IR64HT4 in the field in the Philippines. Thus, combination of early morning flowering and heat tolerance QTLs is an elegant breeding strategy to cope with future extreme climate.


HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 181-190
Author(s):  
Shih-wei Lin ◽  
Tsung-han Lin ◽  
Cynthia Kung Man Yee ◽  
Joyce Chen ◽  
Yen-wei Wang ◽  
...  

High temperature stress is a major limiting factor for pepper productivity, which will continue to be a problem under climate change scenarios. Developing heat tolerant cultivars is critical for sustained pepper production, especially in tropical and subtropical regions. In fruiting crops, like pepper, reproductive tissues, especially pollen, are the most sensitive to high temperature stress. Typically, pollen viability and germination are assessed through staining and microscopy, which is tedious and potentially inaccurate. To increase efficiency in assessing pollen traits of pepper, the use of impedance flow cytometry (IFC) has been proposed. We conducted three independent experiments to determine the most effective methodology to use IFC for evaluating pollen traits for heat tolerance in pepper. Seven floral developmental stages were evaluated, and stages 3, 4, and 5 were found to best combine high pollen concentration and activity. Flowers in development stages 3, 4, or 5 were then heat treated at 41, 44, 47, 50, and 55 °C or not heat treated (control). The critical temperature to assess heat tolerance using IFC was found to be 50 °C, with a reduction in pollen activity and concentration occurring at temperatures greater than 47 °C. Twenty-one entries of pepper were then accessed for pollen traits using the staining and IFC methods over 2 months, April (cooler) and June (hotter). Growing environment was found to be the greatest contributor to variability for nearly all pollen traits assessed, with performance during June nearly always being lower. PBC 507 and PBC 831 were identified as being new sources of heat tolerance, based on using IFC for assessing pollen. Pollen viability determined by staining and pollen activity determined using IFC were significantly positively correlated, indicating that IFC is an efficient and accurate method to assess pollen traits in pepper. This work provides a basis for further research in this area and supports more efficient breeding of heat-tolerant cultivars.


2018 ◽  
Vol 19 (8) ◽  
pp. 2166 ◽  
Author(s):  
Pronob Paul ◽  
Srinivasan Samineni ◽  
Mahendar Thudi ◽  
Sobhan Sajja ◽  
Abhishek Rathore ◽  
...  

Chickpea (Cicer arietinum L.), a cool-season legume, is increasingly affected by heat-stress at reproductive stage due to changes in global climatic conditions and cropping systems. Identifying quantitative trait loci (QTLs) for heat tolerance may facilitate breeding for heat tolerant varieties. The present study was aimed at identifying QTLs associated with heat tolerance in chickpea using 292 F8-9 recombinant inbred lines (RILs) developed from the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant). Phenotyping of RILs was undertaken for two heat-stress (late sown) and one non-stress (normal sown) environments. A genetic map spanning 529.11 cM and comprising 271 genotyping by sequencing (GBS) based single nucleotide polymorphism (SNP) markers was constructed. Composite interval mapping (CIM) analysis revealed two consistent genomic regions harbouring four QTLs each on CaLG05 and CaLG06. Four major QTLs for number of filled pods per plot (FPod), total number of seeds per plot (TS), grain yield per plot (GY) and % pod setting (%PodSet), located in the CaLG05 genomic region, were found to have cumulative phenotypic variation of above 50%. Nineteen pairs of epistatic QTLs showed significant epistatic effect, and non-significant QTL × environment interaction effect, except for harvest index (HI) and biomass (BM). A total of 25 putative candidate genes for heat-stress were identified in the two major genomic regions. This is the first report on QTLs for heat-stress response in chickpea. The markers linked to the above mentioned four major QTLs can facilitate marker-assisted breeding for heat tolerance in chickpea.


2015 ◽  
Vol 43 ◽  
pp. 63-68 ◽  
Author(s):  
Sreyashi Paul ◽  
Nirmali Gogoi

The increasing temperature is going to be more vulnerable for cool season crops like potato which requires an optimum productivity temperature of 18 to 20 °C. Thus, breeding for heat tolerance has become very important. Therefore, some previously used indices for abiotic stress tolerance have been used in our study for screening of high temperature stress tolerance in potato. Three high yielding (Kufri jyoti, Kufri megha and Kufri pokraj) and two local (Rangpuria and Badami) commonly grown potato cultivars were selected for our experiment. Potato cultivars were sown under normal condition and two high temperature conditions (polyhouse and early season) and indices such as HSI (heat susceptibility index), HTI (heat tolerance index), GM (geometric mean) and HII (heat intensity index) were used to evaluate the performance of the cultivars under all the three temperature conditions. The positive and significant correlation between HTI (heat tolerance index), and GM (geometric mean) as well as with tuber yield under all the conditions revealed that these indices were efficient in selecting the high temperature tolerant potato cultivars. We recorded the equal applicability of these two indices for both high yielding and local group of potato cultivars. Our study revealed that cultivar Kufri megha and Rangpuria showed higher heat tolerance between high yielding and local cultivars respectively.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2517
Author(s):  
Yajun Liang ◽  
Zhaolong Gong ◽  
Junduo Wang ◽  
Juyun Zheng ◽  
Yizan Ma ◽  
...  

Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluzao36′) and heat-sensitive (‘Che61-72′) cultivars of cotton treated with high-temperature stress as plant materials and performed comparative nanopore sequencing transcriptome analysis to reveal the potential heat-tolerant mechanism of cotton. Results showed that 120,605 nonredundant sequences were generated from the raw reads, and 78,601 genes were annotated. Differentially expressed gene (DEG) analysis showed that a total of 19,600 DEGs were screened; the DEGs involved in the ribosome, heat shock proteins, auxin and ethylene signaling transduction, and photosynthesis pathways may be attributed to the heat tolerance of the heat-tolerant cotton cultivar. This study also predicted a total of 5118 long non-coding RNAs (lncRNAs)and 24,462 corresponding target genes. Analysis of the target genes revealed that the expression of some ribosomal, heat shock, auxin and ethylene signaling transduction-related and photosynthetic proteins may be regulated by lncRNAs and further participate in the heat tolerance of cotton. This study deepens our understandings of the heat tolerance of cotton.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Junqin Wen ◽  
Fangling Jiang ◽  
Yiqun Weng ◽  
Mintao Sun ◽  
Xiaopu Shi ◽  
...  

Abstract Background High temperature is one of the major abiotic stresses in tomato and greatly reduces fruit yield and quality. Identifying high-temperature stress-responsive (HSR) genes and breeding heat-tolerant varieties is an effective way to address this issue. However, there are few reports on the fine mapping of heat-tolerance quantitative trait locus (QTL) and the identification of HSR genes in tomato. Here, we applied three heat tolerance-related physiological indexes, namely, relative electrical conductivity (REC), chlorophyll content (CC) and maximum photochemical quantum efficiency (Fv/Fm) of PSII (photosystem II), as well as the phenotypic index, the heat injury index (HII), and conventional QTL analysis combined with QTL-seq technology to comprehensively detect heat-tolerance QTLs in tomato seedlings. In addition, we integrated the QTL mapping results with RNA-seq to identify key HSR genes within the major QTLs. Results A total of five major QTLs were detected: qHII-1-1, qHII-1-2, qHII-1-3, qHII-2-1 and qCC-1-5 (qREC-1-3). qHII-1-1, qHII-1-2 and qHII-1-3 were located, respectively, in the intervals of 1.43, 1.17 and 1.19 Mb on chromosome 1, while the interval of qHII-2-1 was located in the intervals of 1.87 Mb on chromosome 2. The locations observed with conventional QTL mapping and QTL-seq were consistent. qCC-1-5 and qREC-1-3 for CC and REC, respectively, were located at the same position by conventional QTL mapping. Although qCC-1-5 was not detected in QTL-seq analysis, its phenotypic variation (16.48%) and positive additive effect (0.22) were the highest among all heat tolerance QTLs. To investigate the genes involved in heat tolerance within the major QTLs in tomato, RNA-seq analysis was performed, and four candidate genes (SlCathB2, SlGST, SlUBC5, and SlARG1) associated with heat tolerance were finally detected within the major QTLs by DEG analysis, qRT-PCR screening and biological function analysis. Conclusions In conclusion, this study demonstrated that the combination of conventional QTL mapping, QTL-seq analysis and RNA-seq can rapidly identify candidate genes within major QTLs for a complex trait of interest to replace the fine-mapping process, thus greatly shortening the breeding process and improving breeding efficiency. The results have important applications for the fine mapping and identification of HSR genes and breeding for improved thermotolerance.


2019 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul-Qamar ◽  
...  

AbstractPlants adapt to harsh environments particularly high temperature stress by regulating their physiological and biochemical processes, which are key tolerance mechanisms. Thus, identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular traits. The estimate of variance components revealed significant differences (P<0.001) among genotypes, treatments and their interaction for almost all traits. Principal component analysis showed significant diversity among the genotypes and traits under high-temperature stress. The mutant ‘HTT-121’ was identified as the most heat tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress conditions. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice at early growth stages. Notably, heat sensitive mutants showed a significant accumulation of ROS level, reduced activities of catalase and upregulation of OsSRFP1 expression under heat stress, suggesting their key role in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and the development of mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.Summary text for table of contentsHeat stress probably due to changing climate scenario has become a serious threat for global rice production. On the other side, efforts to develop high yielding cultivars have led to the reduced genetic variability to withstand harsh environmental conditions. This study aimed to identify novel heat tolerant mutants developed through gamma irradiation which will provide a unique genetic resource for breeding programs. Further, we have identified reliable selection indices for screening heat-tolerant rice germplasm at early growth stages.


Sign in / Sign up

Export Citation Format

Share Document