scholarly journals Comparison of Research Data of Diesel–Biodiesel–Isopropanol and Diesel–Rapeseed Oil–Isopropanol Fuel Blends Mixed at Different Proportions on a CI Engine

2021 ◽  
Vol 13 (18) ◽  
pp. 10059
Author(s):  
Sai Manoj Rayapureddy ◽  
Jonas Matijošius ◽  
Alfredas Rimkus

Depletion in the levels of fossil fuels and increasing environmental concerns associated with the rise in consumption of conventional fuels are among the top global concerns. Finding an alternative sustainable fuel that matches the performance characteristics of diesel/petrol fuels as well as decreases the exhaust emissions has been a challenging task. After deliberate research, it is found that every alternative fuel is associated with different problems when they are used independently, thereby limiting its benefits. Scientists suggest that using different fuel blends might lead to sustainability. This article is the analysis of data obtained from the experimentation based on two different alternative fuels, Rapeseed Methyl Ester (RME)-based biodiesel and Rapeseed Oil (RO), blended with diesel (D) and Isopropanol (P) into three different proportions each. Tests were carried out in a compression ignition (CI) engine, and comparisons are based on the resulted performance and exhaust emission characteristics. The two different alternative fuels are blended into the following proportions to make six fuel mixtures, D50RME30P20, D50RME40P10, D50RME45P5, D50RO30P20, D50RO40P10 and D50RO45P5. The tests are carried out at different loads (BMEP) and are compared to that of pure diesel. Using the experimentation results, we also obtained the combustion characteristics of all fuel mixtures for further evaluation

2020 ◽  
Vol 39 (3) ◽  
pp. 752-760
Author(s):  
H.A. Dandajeh ◽  
Y.S. Sanusi ◽  
T.O. Ahmadu

This paper presents an experimental investigation into the exhaust emissions characteristics of a gardener Compression Ignition (CI) Engine fuelled with rapeseed methyl Esther (RME) and fossil diesel under lean equivalence ratios (0.2≤ φ ≤0.8). The experiments were carried out at engine speeds of 750 and 1250 rpm under five different loads. The experimental results showed that NOx and CO2 emissions increased while emissions of HC, O2 and CO decreased with increasing equivalence ratio, exhaust temperature, brake mean effective pressure and specific fuel consumption. All exhaust emissions were found to decrease with increasing engine speed from 750 to 1250 rpm. There was reduction in exhaust emissions of RME over fossil diesel by 0.06% for O2, 84% for CO and 4.7% for CO2 at 750rpm. At higher speed of 1250rpm however, RME was observed having higher NOx and CO2 but relatively lower O2 and CO than the fossil diesel. Keywords— Exhaust Emission, Compression ignition engine, rapeseed methyl Esther, engine speed, fossil diesel


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110209
Author(s):  
Zain Ul Hassan ◽  
Muhammad Usman ◽  
Muhammad Asim ◽  
Ali Hussain Kazim ◽  
Muhammad Farooq ◽  
...  

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%–75% of the load range. Similarly, the contents of NOx, CO, and HC, and level of noise and smoke were measured varying the percentage of water from 2% to 10% gradually for all values of loads. BTE in the case of water emulsified diesel was decreased gradually as the percentage of water increased accompanied by a gradual increase in BSFC. Thus, WED10 showed a maximum 13.08% lower value of BTE while BSFC was increased by 32.28%. However, NOx emissions (21.8%) and smoke (48%) were also reduced significantly in the case of WED10 along with an increase in the emissions of HC and CO and noise. The comparative analysis showed that the emulsified diesel can significantly reduce the emission of NOx and smoke, but it has a negative impact on the performance characteristics and HC, CO, and noise emissions which can be mitigated by trying more fuels variations such as biodiesel and using different water injection methods to decrease dependency on fossil fuels and improve the environmental impacts of CI engines.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


2018 ◽  
Author(s):  
Adriaan Smuts Van Niekerk ◽  
Benjamin Drew ◽  
Neil Larsen ◽  
Peter Kay

To reduce the amount of carbon dioxide released from transportation the EU has implemented legislation to mandate the renewable content of petrol and diesel fuels. However, due to the complexity of the combustion process the addition of renewable content, such as biodiesel and ethanol, can have a detrimental effect on other engine emissions. In particular the engine load can have a significant impact on the emissions. Most research that have studied this issue are based on steady state tests, that are unrealistic of real world driving and will not capture the difference between full and part loads. This study aims to address this by investigating the effect of renewable fuel blends of diesel, biodiesel and ethanol on the emissions of a compression ignition engine tested over the World Harmonised Light Vehicle Test Procedure (WLTP). Diesel, biodiesel and ethanol were blended to form binary and ternary blends, the ratios were determined by Design of Experiments (DoE). The total amount of emissions for CO, CO2 and NOx as well as the fuel consumption, were measured from a 2.4 liter compression ignition (CI) engine running over the WLTP drive cycle. The results depicted that percentages smaller than 10 % of ethanol in the fuel blend can reduce CO emissions, CO2 emissions as well as NOx emissions, but increases fuel consumption with increasing percentage of ethanol in the fuel blend. Blends with biodiesel resulted in minor increases in CO emissions due to the engine being operated in the low and medium load regions over the WLTP. CO2 emissions as well as NOx emissions increased as a result of the high oxygen content in biodiesel which promoted better combustion. Fuel consumption increased for blends with biodiesel as a result from biodiesel's lower heating value. All the statistical models describing the engine responses were significant and this demonstrated that a mixture DoE is suitable to quantify the effect of fuel blends on an engine's emissions response. An optimised ternary blend of B2E9 was found to be suitable as a 'drop in' fuel that will reduce harmful emissions of CO emissions by approximately 34 %, NOx emissions by 10 % and CO2 emissions by 21 % for transient engine operating scenarios such as the WLTP drive cycle.


Currently the Biggest threat to environment and public health is Air Pollution which is caused by emissions of hydrocarbons, nitrogen oxides, carbon oxides and sulphur oxides by burning of fossil fuels. In recent years consumption of fossil fuels by various factories has rapidly increased that has let for the search of alternative fuels. These fuels are also known as non-conventional fuels which can be used as a substitute for conventional fuels Algae oil is one of the promising potential sources of bio-fuels generated from microbes. It is generally preferred because it is sustainable and environment-friendly oil which have numerous advantages. So the algae oil has used for performance and emission test on a diesel engine. The blends have been made for testing B5, B10. In which 5% of methanol has mixed and others are raw algae oil (5% for B5 and 10% for B10) and Diesel (90% for B5 and 85% for B10). The Kirlosker Engine with 6.97 HP (5.2KW)@1500rpm is used for Performance analyzing. Parallels AVL emission analyzer and smoke detector were connected with the exhaust of the engine. All values of gases were displayed and compared.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2447 ◽  
Author(s):  
Michaela Hissa ◽  
Seppo Niemi ◽  
Katriina Sirviö ◽  
Antti Niemi ◽  
Teemu Ovaska

Sustainable liquid fuels will be needed for decades to fulfil the world’s growing energy demands. Combustion systems must be able to operate with a variety of renewable and sustainable fuels. This study focused on how the use of various alternative fuels affects combustion, especially in-cylinder combustion. The study investigated light fuel oil (LFO) and six alternative liquid fuels in a high-speed, compression-ignition (CI) engine to understand their combustion properties. The fuels were LFO (baseline), marine gas oil (MGO), kerosene, rapeseed methyl ester (RME), renewable diesel (HVO), renewable wood-based naphtha and its blend with LFO. The heat release rate (HRR), mass fraction burned (MFB) and combustion duration (CD) were determined at an intermediate speed at three loads. The combustion parameters seemed to be very similar with all studied fuels. The HRR curve was slightly delayed with RME at the highest load. The combustion duration of neat naphtha decreased compared to LFO as the engine load was reduced. The MFB values of 50% and 90% occurred earlier with neat renewable naphtha than with other fuels. It was concluded that with the exception of renewable naphtha, all investigated alternative fuels can be used in the non-road engine without modifications.


Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Bohuslav Peterka ◽  
Miroslav Müller ◽  
Michal Holubek ◽  
...  

Liquid biofuels for compression ignition engines are often based on vegetable oils. In order to be used in compression ignition engine the vegetable oils have to be processed because of their high viscosity or it is also possible to use vegetable oils in fuel blends. In order to decrease the viscosity of the fuel blends containing crude vegetable oil the alcohol-based fuel admixtures can be used. The paper describes the effect of rapeseed oil–diesel fuel–n-butanol blends on combustion characteristics and solid particles production of turbocharged compression ignition engine. The 10% and 20% concentrations of n-butanol in the fuel blend were measured and analysed. The engine Zetor 1204, located in tractor Zetor Forterra 8641 with the power of 60kW and direct injection was used for the measurement. The engine was loaded through power take off shaft of the tractor using mobile dynamometer MAHA ZW500. The measurement was carried out in stabilized conditions at 20%, 60% and 100% engine load. The engine speed was kept at 1950 rpm. Tested fuel blends showed lower production of solid particles than diesel fuel and lower peak cylinder pressure and with increasing concentration of n-butanol in the fuel blend the ignition delay was prolonged and premixed phase of combustion was increased.


2019 ◽  
Vol 8 (4) ◽  
pp. 12595-12598

Many researchers have been working on alternative fuels and it blends in order to enhance the performance of automobiles. There are number of alternative fuel blends have been tested on automobile engines and their performances have been analyzed. In this present work, Methyl Ester from Waste cooking oil to be prepared and going to blend with Diesel with different ratios, is an alternative fuel. The experiment is going to be conducted on the air cooled four stroke Diesel engine using these blends with different proportions and nozzle injection pressures, finally its performance characteristics to be analyzed.


2011 ◽  
Vol 110-116 ◽  
pp. 2234-2238
Author(s):  
A.R. Norwazan ◽  
A.K. Zulkiffli ◽  
M.S. Abd Rahim

Biodiesel is an alternative fuels for diesel engine with the blending process by chemically combination of vegetable or animal oil and diesel fuels. It is proved that the biodiesel can be used without any modification on the compression ignition (CI) engine. In this study, the cooking oil of namely carotene is used to produce the biodiesel blend fuels in various percentages. The biodiesel blend and diesel fuel are evaluated to analyze the engine performances in 4 cylinder inline CI engine. The characteristics of engine performances namely brake power output and brake specific fuel consumption are measured with various loads applied. The fuel properties of biodiesel blend are investigated namely density, dynamics viscosity and kinetic viscosity. The experimental results show that the performance of biodiesel B10 is better than it counterpart namely diesel in terms of brake power output and brake specific fuel consumption (BSFC).


Sign in / Sign up

Export Citation Format

Share Document