scholarly journals Antagonistic activity of bacteria from wild honey against Colletotrichum musae, and testing of wild honey as biopesticide spray to control banana anthracnose

2021 ◽  
Vol 37 ◽  
pp. e37089
Author(s):  
Mark Paul Selda Rivarez ◽  
Elizabeth P. Parac ◽  
Niño R. Laurel ◽  
Benjamin V. Cunanan ◽  
Angelie B. Magarro ◽  
...  

Anthracnose is a foliar and fruit disease caused by Colletotrichum spp. affecting a wide range of crops. Infection occurs early followed by quiescence in fruits, such as in banana, where chemical-based pesticides are used as a dependable fungal control for many years. There is an increasing need for a safe control and as implicated in the Organic Agriculture Act of 2010 (RA 10068) in the Philippines. This scenario drove the use of alternative pest control such as the use of biologicals and natural products. In this study, seven bacteria were isolated from wild honey, produced by Apis mellifera, wherein four (BC2, BC3, BC6 and BC7) were found to be an effective antagonist against Colletotrichum musae in in vitro conditions. These bacteria were identified to belong to the genus Lactobacillus spp. (BC2, BC3, BC7) and Bacillus spp. (BC6) based on sugar utilization tests, morphological and cultural growth in PDPA. For the in vivo test, different dilutions of wild honey were used and it was found out that lower concentrations were effective as biopesticide spray to prevent anthracnose infection. Lastly, we report herewith the first isolation of bacteria with biological control potential from wild honey, and to apply the raw or natural product as biopesticide in postharvest fruits.

Author(s):  
Haris Butt ◽  
Kubilay Kurtulus Bastas

Fire blight, affecting more than one hundred and thirty species in the Rosaceae, is probably the most destructive disease affecting pear and apple cultivars in many countries. Currently, there are no effective synthetic compounds with systemic properties. Other major problem is the occurrence and spread of strains of Erwinia amylovora with resistance to streptomycin and copper. Taken into consideration the human and environmental health, the use of biocontrol agents either as an alternative or as a supplement within an integrated fire blight management strategy has attracted worldwide attention. In this study, E. amylovora solution of 107 CFU ml-1 was treated with bio-control agents, Bacillus subtilis str. QST 713, B. amyloliquefaciens str. MBI 600 and their mixture (at solution densities of 106, 107 and 108 CFU ml-1 for each one) on Petri dishes, containing King’s B medium and, compared with positive (streptomycin sulphate) and negative (sterile distilled water) controls. In vivo studies were performed on two-year-old apple cv. Gala seedlings grown in 45-cm-diameter pots containing a sterilized mix of soil–sand–peat under controlled greenhouse conditions (85% relative humidity, 25°C temperature and 16h of day light). The plants were irrigated as needed by drip-irrigation and each pot received a mineral solution (NPK: 20–20–20) at 2 g l-1 twice. When plant shoots reached a length of 30-35 cm, bio-control agents, individually and their mixture, were applied to the plants by a hand-sprayer. Obtaining the data, 108 CFU ml-1 of Bacillus spp. suspension mixture showed strongest in vitro antibacterial effect (26mm) among the tested treatments after positive control streptomycin (28.6mm). Parallel to in vitro findings, the mixture was most effective against the pathogen on cv. Gala (66.03%). Findings show that the use of mixture of beneficial microorganisms with individual antagonistic properties against the pathogen can be an effective strategy as a natural alternative to agrochemicals in the scope of good agriculture practices.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
K. Blowman ◽  
M. Magalhães ◽  
M. F. L. Lemos ◽  
C. Cabral ◽  
I. M. Pires

Essential oils are secondary metabolites with a key-role in plants protection, consisting primarily of terpenes with a volatile nature and a diverse array of chemical structures. Essential oils exhibit a wide range of bioactivities, especially antimicrobial activity, and have long been utilized for treating various human ailments and diseases. Cancer cell prevention and cytotoxicity are exhibited through a wide range of mechanisms of action, with more recent research focusing on synergistic and antagonistic activity between specific essential oils major and minor components. Essential oils have been shown to possess cancer cell targeting activity and are able to increase the efficacy of commonly used chemotherapy drugs including paclitaxel and docetaxel, having also shown proimmune functions when administered to the cancer patient. The present review represents a state-of-the-art review of the research behind the application of EOs as anticancer agents both in vitro and in vivo. Cancer cell target specificity and the use of EOs in combination with conventional chemotherapeutic strategies are also explored.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Nisrine Sbai Idrissi ◽  
Aicha Ouarzane ◽  
Latifa Elouazni ◽  
Aziz Hmyene ◽  
Said Elantri ◽  
...  

Abstract Background Blackleg and tuber soft rot are among the most important potato diseases caused by the bacteria belonging to the genera Pectobacterium. This pathogen causes significant economic losses each year. The antagonistic activity of different bacterial cultures against this pathogen was studied. Results Six hundred eight bacterial cultures isolated from potato tubers and rhizosphere soils procured from different locations across Morocco were tested for their antagonistic activity against Pectobacterium carotovorum. Forty isolates, all originating from tubers, showed positive antagonistic activity during preliminary screening. Among the 40 isolates, 10 were found to have a symptom suppression superior to 90%. Of the 10 isolates, 9 showed clear zone in the agar medium (in vitro test), with differences between antagonist’s inhibition diameter. For the in vivo test, 8 isolates induced total suppression of soft rot on potato slices (in vivo test). The other 2 biocontrol strains (Amo-23 and Atd-2) were capable to minimize soft rot symptoms of up to 94.4 and 96.2%, respectively. Among the selected strains for in planta experiment, 6 strains (namely Ame-4, Atd-2, Atd-4, Ag-216, Al-51, and Ama-501) showed total reduction of disease symptoms. Biochemical and molecular tests identified 8 strains of Bacillus sp. and 2 strains of Pseudomonas sp. Conclusions The results of the in vivo and the greenhouse experiments indicated that the selected isolates had a greatly significant effectiveness for suppressing blackleg and soft rot symptoms. The selected isolates could, therefore, be used as a biocontrol agent against blackleg and soft rot of potato.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1992 ◽  
Vol 67 (06) ◽  
pp. 660-664 ◽  
Author(s):  
Virgilio Evangelista ◽  
Paola Piccardoni ◽  
Giovanni de Gaetano ◽  
Chiara Cerletti

SummaryDefibrotide is a polydeoxyribonucleotide with antithrombotic effects in experimental animal models. Most of the actions of this drug have been observed in in vivo test models but no effects have been reported in in vitro systems. In this paper we demonstrate that defibrotide interferes with polymorphonuclear leukocyte-induced human platelet activation in vitro. This effect was not related to any direct interaction with polymorphonuclear leukocytes or platelets, but was due to the inhibition of cathepsin G, the main biochemical mediator of this cell-cell cooperation. Since cathepsin G not only induces platelet activation but also affects some endothelial cell functions, the anticathepsin G activity of defibrotide could help to explain the antithrombotic effect of this drug.


Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


2019 ◽  
Vol 18 (14) ◽  
pp. 1983-1990 ◽  
Author(s):  
V. Lenin Maruthanila ◽  
Ramakrishnan Elancheran ◽  
Ajaikumar B. Kunnumakkar ◽  
Senthamaraikannan Kabilan ◽  
Jibon Kotoky

Emerging evidence present credible support in favour of the potential role of mahanine and girinimbine. Non-toxic herbal carbazole alkaloids occur in the edible part of Murraya koenigii, Micromelum minutum, M. zeylanicum, and M. euchrestiolia. Mahanine and girinimbine are the major potent compounds from these species. In fact, they interfered with tumour expansion and metastasis development through down-regulation of apoptotic and antiapoptotic protein, also involved in the stimulation of cell cycle arrest. Consequently, these compounds were well proven for the in-vitro and in vivo evaluation that could be developed as novel agents either alone or as an adjuvant to conventional therapeutics. Therefore, mahanine and girinimbine analogs have the potential to be the promising chemopreventive agents for the tumour recurrence and the treatment of human malignancies. In this review, an updated wide-range of pleiotropic anticancer and biological effects induction by mahanine and girinimbine against cancer cells were deeply summarized.


Sign in / Sign up

Export Citation Format

Share Document