scholarly journals Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter?

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6365
Author(s):  
Christian Bailly ◽  
Xavier Thuru ◽  
Bruno Quesnel

The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.

2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


2020 ◽  
Vol 20 (9) ◽  
pp. 720-727
Author(s):  
Jianguo Qiu ◽  
Wei Tang ◽  
Chengyou Du

Background: Immune checkpoint modulators, such as the programmed death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitor, cytotoxic T-Lymphocyte-associated antigen 4 (CTLA-4) inhibitor have been investigated with encouraging results for hepatocellular carcinoma (HCC). However, the safety of this strategy in patients with previous liver transplantation (LT) is not well studied. Objective: To explore the safety and feasibility of immune checkpoints inhibitors in recurrent and metastatic HCC patients on a background of LT. Methods: A case of recurrent, refractory, metastatic HCC after LT, where PD-1 inhibitor was initiated, was described and related literature was reviewed. Results: There was complete remission in lung metastases and the partial radiological response of metastatic retroperitoneal lymph node to the drug with no liver graft rejection after 13 cycles of PD- 1 inhibitor injection. PD-1inhibitor, at least in this patient, was verified to play an important role in controlling tumor progression and prolonging patient survival. Conclusions: This novel drug might be a useful method to allow doctors to guarantee a better chance for long-term survival in recurrent, metastatic HCC patients with the previous LT. However, it should be used with caution in allograft recipients due to the risk of acute graft rejection, further larger, prospective studies are needed to determine optimal immunomodulatory therapy to achieve optimal anti-tumor efficacy with transplant liver preservation.


2021 ◽  
Author(s):  
Yanlin Du ◽  
Da Zhang ◽  
Yiru Wang ◽  
Ming Wu ◽  
Cuilin Zhang ◽  
...  

A highly stable multifunctional aptamer was prepared for strengthening antitumor immunity through a dual immune checkpoint blockade of CTLA-4 and PD-L1.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2278
Author(s):  
Afshin Derakhshani ◽  
Zeinab Rostami ◽  
Hossein Safarpour ◽  
Mahdi Abdoli Shadbad ◽  
Niloufar Sadat Nourbakhsh ◽  
...  

Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1949
Author(s):  
Yawen Dong ◽  
Jeffrey Sum Lung Wong ◽  
Ryohichi Sugimura ◽  
Ka-On Lam ◽  
Bryan Li ◽  
...  

Advanced, unresectable hepatocellular carcinoma has a dismal outcome. Multiple immune checkpoint inhibitors (ICIs) targeting the programmed-cell death 1 pathway (PD-1/L1) have been approved for the treatment of advanced HCC. However, outcomes remain undesirable and unpredictable on a patient-to-patient basis. The combination of anti-PD-1/L1 with alternative agents, chiefly cytotoxic T-lymphocyte antigen-4 (CTLA-4) ICIs or agents targeting other oncogenic pathways such as the vascular endothelial growth factor (VEGF) pathway and the c-MET pathway, has, in addition to the benefit of directly targeting alterative oncogenic pathways, in vitro evidence of synergism through altering the genomic and function signatures of T cells and expression of immune checkpoints. Several trials have been completed or are underway evaluating such combinations. Finally, studies utilizing transcriptomics and organoids are underway to establish biomarkers to predict ICI response. This review aims to discuss the biological rationale and clinical advances in ICI-based combinations in HCCs, as well as the progress and prospects of the search for the aforementioned biomarkers in ICI treatment of HCC.


2021 ◽  
Vol 10 (9) ◽  
pp. 1889
Author(s):  
Ritu Shrestha ◽  
Prashanth Prithviraj ◽  
Kim R. Bridle ◽  
Darrell H. G. Crawford ◽  
Aparna Jayachandran

Hepatocellular carcinoma (HCC) is the most common type of primary hepatic malignancy. HCC is one of the leading causes of cancer deaths worldwide. The oral multi-tyrosine kinase inhibitor Sorafenib is the standard first-line therapy in patients with advanced unresectable HCC. Despite the significant survival benefit in HCC patients post treatment with Sorafenib, many patients had progressive disease as a result of acquiring drug resistance. Circumventing resistance to Sorafenib by exploring and targeting possible molecular mechanisms and pathways is an area of active investigation worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process allowing epithelial cells to assume mesenchymal traits. HCC tumour cells undergo EMT to become immune evasive and develop resistance to Sorafenib treatment. Immune checkpoint molecules control immune escape in many tumours, including HCC. The aim of this study is to investigate whether combined inhibition of EMT and immune checkpoints can re-sensitise HCC to Sorafenib treatment. Post treatment with Sorafenib, HCC cells PLC/PRF/5 and Hep3B were monitored for induction of EMT and immune checkpoint molecules using quantitative reverse transcriptase (qRT)- PCR, western blot, immunofluorescence, and motility assays. The effect of combination treatment with SB431542, a specific inhibitor of the transforming growth factor (TGF)-β receptor kinase, and siRNA mediated knockdown of programmed cell death protein ligand-1 (PD-L1) on Sorafenib resistance was examined using a cell viability assay. We found that three days of Sorafenib treatment activated EMT with overexpression of TGF-β1 in both HCC cell lines. Following Sorafenib exposure, increase in the expression of PD-L1 and other immune checkpoints was observed. SB431542 blocked the TGF-β1-mediated EMT in HCC cells and also repressed PD-L1 expression. Likewise, knockdown of PD-L1 inhibited EMT. Moreover, the sensitivity of HCC cells to Sorafenib was enhanced by combining a blockade of EMT with SB431542 and knockdown of PD-L1 expression. Sorafenib-induced motility was attenuated with the combined treatment of SB431542 and PD-L1 knockdown. Our findings indicate that treatment with Sorafenib induces EMT and expression of immune checkpoint molecules, which contributes to Sorafenib resistance in HCC cells. Thus, the combination treatment strategy of inhibiting EMT and immune checkpoint molecules can re-sensitise HCC cells to Sorafenib.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A888-A888
Author(s):  
Laura Ridgley ◽  
Angus Dalgleish ◽  
Mark Bodman-Smith

BackgroundVγ9Vδ2 T-cells are a subset of cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses, often exploited in cancer immunotherapy. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of activatory and inhibitory markers on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy.MethodsPBMCs were isolated from healthy donors and the expression of activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry at baseline, following 24 hours activation and 14 days expansion using zoledronic acid (ZA) and Bacillus Calmette-Guerin (BCG), both with IL-2. Activation and expansion of Vδ2 cells was assessed by expression of CD69 and by frequency of Vδ2 cells, respectively. Production of effector molecules was also assessed following coculture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also assessed.ResultsVγ9Vδ2 T-cells constitutively expressed high levels of NK-associated activatory markers NKG2D and DNAM1 which remained high following stimulation with ZA and BCG. Vγ9Vδ2 T-cells expressed variable levels of checkpoint inhibitor molecules at baseline with high levels of BTLA, KLRG1 and NKG2A and intermediate levels of PD1, TIGIT and VISTA. Expression of checkpoint receptors were modulated following activation and expansion with ZA and BCG with decreased expression of BTLA and upregulation of numerous markers including PD1, TIGIT, TIM3, LAG3 and VISTA. Expression of these markers is further modulated upon coculture with tumour cell lines with changes reflecting activation of these cells with Vγ9Vδ2 T-cells expressing inhibitory receptors PD1 and NKG2A producing the highest level of TNF.ConclusionsOur data reveals unique characteristics of Vδ2 in terms of their expression of immune checkpoints, which provide a mechanism which may be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. Our work suggests different profiles of immune checkpoints dependent on the method of stimulation. This highlights importance of expansion method in the function of Vγ9Vδ2 T-cells. Furthermore, this work suggests important candidates for blockade by immune checkpoint therapy in order to increase the successful use of Vγ9Vδ2 T-cells in cancer immunotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A305-A305
Author(s):  
Kathryn Appleton ◽  
Katy Lassahn ◽  
Ashley Elrod ◽  
Tessa DesRochers

BackgroundCancerous cells can utilize immune checkpoints to escape T-cell-mediated cytotoxicity. Agents that target PD-1, PD-L1 and CTLA4 are collectively deemed immune checkpoint inhibitors (ICIs), and many have been approved for treatment of non-small cell lung cancer (NSCLC) and melanoma. Unfortunately, many patients do not respond to these therapies and often experience disease progression. Immunohistochemistry assays to predict response to ICIs have been inconsistent in their readouts and often patients with low expression levels respond to ICIs. Understanding the determinants of ICI response in individual patients is critical for improving the clinical success of this drug class. Using patient-derived spheroids from NSCLC and melanoma primary tissue, we developed a multi-plexed assay for detecting ICI efficacy.MethodsNine NSCLC and 11 melanoma primary tumor samples were dissociated to single cells, classified for immune checkpoint expression and cell content by flow cytometry, and seeded for spheroid formation. Spheroids were treated with pembrolizumab, nivolumab, atezolizumab, ipilimumab or durvalumab across a range of concentrations and monitored for cytotoxicity at 24-hours and viability at 72-hours by multiplexing CellTox™ Green Cytotoxicity Assay and CellTiter-Glo® 3D Cell Viability Assay. IFNγ and granzyme B secretion was assessed using Luminex technology. ICI response was evaluated by determining the concentration-response relationship for all three read-outs.ResultsIncreased IFNγ and granzyme B were detected for every ICI in one or more patient samples. ICI-induced IFNγ secretion inversely correlated with PD-1+ immune cells. Durvalumab was significantly more cytotoxic for both NSCLC and melanoma spheroids compared to the other ICIs and significantly reduced spheroid viability with mean spheroid survival decreasing to 19.5% for NSCLC and 58.2% for melanoma. We evaluated if there was an association between durvalumab response and cell composition and found that percent spheroid survival significantly correlated with CD8+ T-cells for both NSCLC (r=-0.7920, p=0.0191) and melanoma (r=-0.6918, p=0.0390). Furthermore, CD8+ T-cells correlated with durvalumab-induced granzyme B secretion for NSCLC (r=-0.7645, p=0.0271) and melanoma (r=-0.7419, p=0.0221).ConclusionsIn this study we show ICI-specific increases in immune-related analytes in a concentration-dependent manner for NSCLC and melanoma patient-derived spheroids. We detected spheroid cytotoxicity following short term ICI treatment which closely mirrored decreased spheroid viability at a later timepoint. Finally, we can decipher response mechanisms as exemplified by durvalumab-induced granzyme B secretion correlating with the presence of CD8+ T-cells which results in reduced spheroid viability for both tested cancer indications.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A283-A283
Author(s):  
Amira Barkal ◽  
Rachel Brewer ◽  
Irving Weissman

BackgroundCancer cells are capable of evading clearance by macrophages through the overexpression of anti-phagocytic, innate immune checkpoint molecules called ‘don’t eat me’ signals, including CD47,1 PD-L1,2 and MHC class I.3 Monoclonal antibodies that antagonize the interaction of ‘don’t eat me’ signals with their macrophage-expressed receptors have demonstrated therapeutic potential in several cancers. However, variability in the magnitude and durability of the responses to these agents has suggested the presence of additional, as yet unknown innate immune checkpoints. Here, we present a functional screening platform which identifies tumor-specific regulators of intratumoral macrophage function. We show that CD24 is a dominant innate immune checkpoint in many solid tumors, including ovarian cancer and breast cancer.4MethodsBy applying our screening method, we uncovered the novel innate immune checkpoint molecule, CD24. To characterize the role of CD24 as a macrophage checkpoint, we leveraged the MCF-7 human xenograft tumor model and the ID8 syngeneic ovarian cancer tumor model. We evaluated the anti-tumor effect of CD24 antagonism through genetic ablation experiments in addition to therapeutic CD24 monoclonal antibody (mAb) blockade. We also utilized primary human immune cells and tumor specimens to assess the effect of CD24 blockade either alone or in combination with additional tumor-targeting antibodies.ResultsWe demonstrate that CD24 promotes immune evasion through its interaction with the inhibitory macrophage receptor Siglec-10. Genetic ablation of either CD24 or Siglec-10, as well as blockade of the CD24–Siglec-10 interaction using monoclonal antibodies, robustly augmented the phagocytosis of all CD24-expressing human tumors that we tested. Therapeutic blockade of CD24 resulted in a macrophage-dependent reduction of tumor growth in vivo and an increase in survival time. The therapeutic efficacy of anti-CD24 mAbs was enhanced when combined with a second anti-tumor antibody. In particular, dual treatment of HER2-positive breast cancers with anti-CD24 mAb and trastuzumab, augmented phagocytosis relative to either treatment alone, even among cancers with inherent trastuzumab resistance (figure 1).Abstract 261 Figure 1Macrophage checkpoints are therapeutic targets. (A) There are four defined innate immune checkpoint signaling axes which exist between macrophages and cancer cells, which all rely on ITIM or ITSM signaling on the cytoplasmic side of the macrophage. (B) Phagocytosis of BT-474 (n = 8 donors) in the presence of anti-CD24 mAb, anti-HER2 mAb or dual treatment, compared with IgG control.ConclusionsThese data reveal CD24 as a highly expressed, anti-phagocytic signal in several cancers, and demonstrate the therapeutic potential for CD24 blockade in cancer immunotherapy, either alone or in combination with existing anticancer treatments. Collectively, this work suggests a new paradigm that innate immune checkpoints are redundant and employed in a tissue-specific and even tumor-specific manner, and makes clear the need to measure the collective expression of these ‘don’t eat me’ signals in order to optimize patient responses to both innate and adaptive immunotherapies.ReferencesMajeti R, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138: 286–299. Gordon SR, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017;545:495–499.Barkal AA, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 2018;19:76–84.Barkal AA, Brewer RE, Markovic M, Kowarsky MA, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, Weissman IL. CD24 signaling through macrophage siglec-10 is a new target for cancer immunotherapy. Nature 2019;572:392–396.Ethics ApprovalThe Human Immune Monitoring Center Biobank and the Stanford Tissue Bank all received IRB approval from the Stanford University Administrative Panels on Human Subjects Research and complied with all ethical guidelines for human subjects research to obtain samples from patients with ovarian cancer and breast cancer, and received informed consent from all patients.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A788-A788
Author(s):  
Xiuning Le ◽  
Minghao Dang ◽  
Venkatesh Hegde ◽  
Bo Jiang ◽  
Ravaen Slay ◽  
...  

BackgroundHuman papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HPV+ HNSCC) is a disease that has moderate response to anti-PD-1/L1 immune checkpoint blockade, with the response rates less than 20% and median progression-free survival less than 3 months. A greater understanding of tumor intrinsic and extrinsic factors that restrict anti-tumor immunity in the tumor immune microenvironment (TIME) is needed to identify other immune checkpoints to enhance therapeutic efficacy.MethodsTwo cohorts (TCGA n=72 and a separate cohort n=84) of surgically resected, treatment-naïve HPV+ HNSCC with RNA-seq were analyzed to understand the immune features. In addition, single-cell RNA-seq and TCR-seq were performed on 18 cases to further delineate the immune molecules' interactions. An immune-competent murine HPV+ HNSCC model was used to preliminarily evaluate the therapeutic efficacy.ResultsIn two bulk-sequenced HPV+ HNSCC cohorts, TIGIT ligands PVR and NECTIN2 were found to associate with an epithelial-to-mesenchymal gene expression signature, suppression of IFNα and IFNγ signaling, a stromal-enriched or immune-excluded TIME, and poor survival. Single-cell RNA-seq of over 72,000 cells of HPV+ HNSCC revealed that the PVR/NECTIN ligand TIGIT was highly prevalent in T-cells (34%), significantly higher than PD1- (20%, p<0.01). There is an enrichment of cell-cell interactions mediated by TIGIT-PVR/NECTIN2 in the TIME of HPV+HNSCC versus normal tonsil. TIGIT was the most differentially upregulated immune checkpoint on clonally expanded CD8+T-cells and was abundant on antigen-experienced, tissue-resident memory CD8+T-cell and T-regulatory subsets. TIGIT ligands PVR, NECTIN1, and NECTIN2 were abundant on mature regulatory dendritic cells (DCs), immunosuppressive plasmacytoid (p)DCs, and macrophages, respectively. TIGIT and PD-1 co-blockade in the mEER syngeneic murine model significantly reduced tumor growth, improved survival, restored effector function of HPV16E7-specific CD8+T cells, natural killer cells, and DCs, and conferred tumor re-challenge protection.ConclusionsTIGIT-PVR/NECTIN receptors/ligands are more abundant than PD-1/L1 in the TIME of HPV+ HNSCC. Co-blockade of TIGIT and PD-1 immune checkpoints enhanced anti-tumor efficacy in a CD8+ T-cell-dependent manner and conferred long-term immune protection in a murine model. Our study nominates TIGIT as a therapeutic target for HPV+ HNSCC.


Sign in / Sign up

Export Citation Format

Share Document