scholarly journals A Global Metabolic Map Defines the Effects of a Si-Based Biostimulant on Tomato Plants under Normal and Saline Conditions

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 820
Author(s):  
Kekeletso H. Chele ◽  
Paul Steenkamp ◽  
Lizelle A. Piater ◽  
Ian A. Dubery ◽  
Johan Huyser ◽  
...  

The ongoing unpredictability of climate changes is exponentially exerting a negative impact on crop production, further aggravating detrimental abiotic stress effects. Several research studies have been focused on the genetic modification of crop plants to achieve more crop resilience against such stress factors; however, there has been a paradigm shift in modern agriculture focusing on more organic, eco-friendly and long-lasting systems to improve crop yield. As such, extensive research into the use of microbial and nonmicrobial biostimulants has been at the core of agricultural studies to improve crop growth and development, as well as to attain tolerance against several biotic and abiotic stresses. However, the molecular mechanisms underlying the biostimulant activity remain enigmatic. Thus, this study is a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics approach to unravel the hypothetical biochemical framework underlying effects of a nonmicrobial biostimulant (a silicon-based formulation) on tomato plants (Solanum lycopersium) under salinity stress conditions. This metabolomics study postulates that Si-based biostimulants could alleviate salinity stress in tomato plants through modulation of the primary metabolism involving changes in the tricarboxylic acid cycle, fatty acid and numerous amino acid biosynthesis pathways, with further reprogramming of several secondary metabolism pathways such as the phenylpropanoid pathway, flavonoid biosynthesis pathways including flavone and flavanol biosynthesis. Thus, the postulated hypothetical framework, describing biostimulant-induced metabolic events in tomato plants, provides actionable knowledge necessary for industries and farmers to, confidently and innovatively, explore, design, and fully implement Si-based formulations and strategies into agronomic practices for sustainable agriculture and food production.

2021 ◽  
Vol 13 (15) ◽  
pp. 8369
Author(s):  
Chintan Kapadia ◽  
R. Z. Sayyed ◽  
Hesham Ali El Enshasy ◽  
Harihar Vaidya ◽  
Deepshika Sharma ◽  
...  

Salinity significantly impacts the growth, development, and reproductive biology of various crops such as vegetables. The cultivable area is reduced due to the accumulation of salts and chemicals currently in use and is not amenable to a large extent to avoid such abiotic stress factors. The addition of microbes enriches the soil without any adverse effects. The effects of microbial consortia comprising Bacillus sp., Delftia sp., Enterobacter sp., Achromobacter sp., was evaluated on the growth and mineral uptake in tomatoes (Solanum Lycopersicum L.) under salt stress and normal soil conditions. Salinity treatments comprising Ec 0, 2, 5, and 8 dS/m were established by mixing soil with seawater until the desired Ec was achieved. The seedlings were transplanted in the pots of the respective pH and were inoculated with microbial consortia. After sufficient growth, these seedlings were transplanted in soil seedling trays. The measurement of soil minerals such as Na, K, Ca, Mg, Cu, Mn, and pH and the Ec were evaluated and compared with the control 0 days, 15 days, and 35 days after inoculation. The results were found to be non-significant for the soil parameters. In the uninoculated seedlings’ (control) seedling trays, salt treatment significantly affected leaf, shoot, root dry weight, shoot height, number of secondary roots, chlorophyll, and mineral contents. While bacterized seedlings sown under saline soil significantly increased leaf (105.17%), shoot (105.62%), root (109.06%) dry weight, leaf number (75.68%), shoot length (92.95%), root length (146.14%), secondary roots (91.23%), and chlorophyll content (−61.49%) as compared to the control (without consortia). The Na and K intake were higher even in the presence of the microbes, but the beneficial effect of the microbe helps plants sustain in the saline environment. The inoculation of microbial consortia produced more secondary roots, which accumulate more minerals and transport substances to the different parts of the plant; thus, it produced higher biomass and growth. Results of the present study revealed that the treatment with microbial consortia could alleviate the deleterious effects of salinity stress and improve the growth of tomato plants under salinity stress. Microbial consortia appear to be the best alternative and cost-effective and sustainable approach for managing soil salinity and improving plant growth under salt stress conditions.


2019 ◽  
Author(s):  
Ruihong Wang ◽  
Hongbo Guo ◽  
Juane Dong

Abstract Background: Our previous study found that male sterility in Salvia miltiorrhiza could result in stunted growth, decrease biomass, inhibit primary metabolism, and promote secondary metabolism, but their molecular mechanisms have not yet been elucidated. In this article, we investigated the underlying mechanism of plant growth and metabolism by using physiological analysis and mRNA sequencing (RNA-Seq). Results: In this study, transcriptomic and physiological analyses were performed to identify the effect on plant growth and metabolic production in male sterile mutants. Through GO and KEGG analysis it was found that the pathways were mainly enriched in processes including organ development, primary metabolic process and secondary metabolic process. Physiological analyses showed that the chloroplast structure of male sterile mutants of Salvia miltiorrhiza was abnormally developed, which could result in decrease in leaf gas exchange (A, E and gs), chlorophyll fluorescence (Fv, Fm and Fv/Fm), and the chlorophyll content. Transcriptomic analyses indicated that disproportionating enzyme 1 (DPE1) catalyzed the degradation of starch, while sucrose synthase 3 (SUS3) and cytosolic invertase 2 (CINV2) catalyzed the degradation of sucrose in S. miltiorrhiza. The results suggested that phenylalanine ammonialyase (PAL) played an important role in the biosynthesis of rosmarinic acid and salvianolic acid B, and flavone synthase (FLS) was an important enzyme catalyzing steps of flavonoid biosynthesis. High expression level of these enzyme genes in male sterile mutants resulted in high content of secondary metabolites. Conclusions: Our results from the physiological and transcriptome analyses reveal underlying mechanism of plant growth and metabolism in male sterile mutants, and provide insight into the crop production of S. miltiorrhiza.


Author(s):  
Vinayak Fasake ◽  
Nita Patil ◽  
Zoya Javed ◽  
Mansi Mishra ◽  
Gyan Tripathi ◽  
...  

: Nanobionics involves the improvement of plant or plant productivity using nanomaterials. Growth of a plant from a seed encompasses various factors which are directly or indirectly dependent upon the imbibition of micro and macro nutrients and vital elements from the soil. Since most of the nutrition is physiologically unavailable to the plants, it leads to mineral deficiencies in plant and mineral toxicity in soil. Either ways, it is not a favourable situation for the microcosom. The new era of nanotechnology offers a potential solution to the availability of the nutrients to the plants due to its unique chemical and physical properties of nanoparticles. Positive and negative impact of these nanoparticles on seed quality and plant growth varies according to the specific properties of nanoparticles. The present review is an attempt to summarize the impact of nanobionics in agriculture.


2021 ◽  
Vol 413 (8) ◽  
pp. 2125-2134
Author(s):  
Domenic Dreisbach ◽  
Georg Petschenka ◽  
Bernhard Spengler ◽  
Dhaka R. Bhandari

AbstractMass spectrometry–based imaging (MSI) has emerged as a promising method for spatial metabolomics in plant science. Several ionisation techniques have shown great potential for the spatially resolved analysis of metabolites in plant tissue. However, limitations in technology and methodology limited the molecular information for irregular 3D surfaces with resolutions on the micrometre scale. Here, we used atmospheric-pressure 3D-surface matrix-assisted laser desorption/ionisation mass spectrometry imaging (3D-surface MALDI MSI) to investigate plant chemical defence at the topographic molecular level for the model system Asclepias curassavica. Upon mechanical damage (simulating herbivore attacks) of native A. curassavica leaves, the surface of the leaves varies up to 700 μm, and cardiac glycosides (cardenolides) and other defence metabolites were exclusively detected in damaged leaf tissue but not in different regions of the same leaf. Our results indicated an increased latex flow rate towards the point of damage leading to an accumulation of defence substances in the affected area. While the concentration of cardiac glycosides showed no differences between 10 and 300 min after wounding, cardiac glycosides decreased after 24 h. The employed autofocusing AP-SMALDI MSI system provides a significant technological advancement for the visualisation of individual molecule species on irregular 3D surfaces such as native plant leaves. Our study demonstrates the enormous potential of this method in the field of plant science including primary metabolism and molecular mechanisms of plant responses to abiotic and biotic stress and symbiotic relationships. Graphical abstract


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 545
Author(s):  
Kumar Nishant Chourasia ◽  
Milan Kumar Lal ◽  
Rahul Kumar Tiwari ◽  
Devanshu Dev ◽  
Hemant Balasaheb Kardile ◽  
...  

Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.


2019 ◽  
Vol 10 ◽  
Author(s):  
Kasper Johansen ◽  
Mitchell J. L. Morton ◽  
Yoann M. Malbeteau ◽  
Bruno Aragon ◽  
Samir K. Al-Mashharawi ◽  
...  

2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1227
Author(s):  
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Ibrahim A. A. Mohamed ◽  
Zongkai Wang ◽  
Ahmed Khatab ◽  
...  

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.


2021 ◽  
Vol 16 (3) ◽  
pp. 7-13
Author(s):  
Radik Safin ◽  
Ayrat Valiev ◽  
Valeriya Kolesar

Global climatic changes have a negative impact on the development of all sectors of the economy, including agriculture. However, the very production of agricultural products is one of the most important sources of greenhouse gases entering the atmosphere. Taking into account the need to reduce the “carbon footprint” in food production, a special place is occupied by the analysis of the volume of greenhouse gas emissions and the development of measures for their sequestration in agriculture. One of the main directions for reducing emissions and immobilizing greenhouse gases is the development of special techniques for their sequestration in the soil, including those used in agriculture. Adaptation of existing farming systems for this task will significantly reduce the “carbon footprint” from agricultural production, including animal husbandry. The development of carbon farming allows not only to reduce greenhouse gas emissions, but also to significantly increase the level of soil fertility, primarily by increasing the content of organic matter in them. As a result, it becomes possible, along with the production of crop production, to produce “carbon units” that are sold on local and international markets. The paper analyzes possible greenhouse gas emissions from agriculture and the potential for their sequestration in agricultural soils. The role of various elements of the farming system in solving the problem of reducing the “carbon footprint” is considered and ways of developing carbon farming in the Republic of Tatarstan are proposed


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2247
Author(s):  
María Ángeles Castillejo ◽  
Ángel M. Villegas-Fernández ◽  
Tamara Hernández-Lao ◽  
Diego Rubiales

Chocolate spot, which is caused by the necrotrophic fungus Botrytis fabae, is a major foliar disease occurring worldwide and dramatically reducing crop yields in faba bean (Vicia faba). Although chemical control of this disease is an option, it has serious economic and environmental drawbacks that make resistant cultivars a more sensible choice. The molecular mechanisms behind the defense against B. fabae are poorly understood. In this work, we studied the leave proteome in two faba bean genotypes that respond differently to B. fabae in order to expand the available knowledge on such mechanisms. For this purpose, we used two-dimensional gel electrophoresis (2DE) in combination with Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF/TOF). Univariate statistical analysis of the gels revealed 194 differential protein spots, 102 of which were identified by mass spectrometry. Most of the spots belonged to proteins in the energy and primary metabolism, degradation, redox or response to stress functional groups. The MS results were validated with assays of protease activity in gels. Overall, they suggest that the two genotypes may respond to B. fabae with a different PSII protein repair cycle mechanism in the chloroplast. The differences in resistance to B. fabae may be the result of a metabolic imbalance in the susceptible genotype and of a more efficient chloroplast detoxification system in the resistant genotype at the early stages of infection.


Sign in / Sign up

Export Citation Format

Share Document