scholarly journals Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults

Amino Acids ◽  
2021 ◽  
Author(s):  
Hagar Elkafrawy ◽  
Radwa Mehanna ◽  
Fayrouz Ali ◽  
Ayman Barghash ◽  
Iman Dessouky ◽  
...  

AbstractPlasma cysteine is associated with human obesity, but it is unknown whether this is mediated by reduced, disulfide (cystine and mixed-disulfides) or protein-bound (bCys) fractions. We investigated which cysteine fractions are associated with adiposity in vivo and if a relevant fraction influences human adipogenesis in vitro. In the current study, plasma cysteine fractions were correlated with body fat mass in 35 adults. Strong positive correlations with fat mass were observed for cystine and mixed disulfides (r ≥ 0.61, P < 0.001), but not the quantitatively major form, bCys. Primary human preadipocytes were differentiated in media containing cystine concentrations varying from 10–50 μM, a range similar to that in plasma. Increasing extracellular cystine (10–50 μM) enhanced mRNA expression of PPARG2 (to sixfold), PPARG1, PLIN1, SCD1 and CDO1 (P = 0.042– < 0.001). Adipocyte lipid accumulation and lipid-droplet size showed dose-dependent increases from lowest to highest cystine concentrations (P < 0.001), and the malonedialdehyde/total antioxidant capacity increased, suggesting increased oxidative stress. In conclusion, increased cystine concentrations, within the physiological range, are positively associated with both fat mass in healthy adults and human adipogenic differentiation in vitro. The potential role of cystine as a modifiable factor regulating human adipocyte turnover and metabolism deserves further study.

Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 309
Author(s):  
Olukayode O. Aremu ◽  
Adebola O. Oyedeji ◽  
Opeoluwa O. Oyedeji ◽  
Benedicta N. Nkeh-Chungag ◽  
Constance R. Sewani Rusike

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1400
Author(s):  
Enrico C. Torre ◽  
Mesude Bicer ◽  
Graeme S. Cottrell ◽  
Darius Widera ◽  
Francesco Tamagnini

Adipose-derived mesenchymal stromal cells (ASCs) are multipotent stem cells which can differentiate into various cell types, including osteocytes and adipocytes. Due to their ease of harvesting, multipotency, and low tumorigenicity, they are a prime candidate for the development of novel interventional approaches in regenerative medicine. ASCs exhibit slow, spontaneous Ca2+ oscillations and the manipulation of Ca2+ signalling via electrical stimulation was proposed as a potential route for promoting their differentiation in vivo. However, the effects of differentiation-inducing treatments on spontaneous Ca2+ oscillations in ASCs are not yet fully characterised. In this study, we used 2-photon live Ca2+ imaging to assess the fraction of cells showing spontaneous oscillations and the frequency of the oscillation (measured as interpeak interval—IPI) in ASCs undergoing osteogenic or adipogenic differentiation, using undifferentiated ASCs as controls. The measurements were carried out at 7, 14, and 21 days in vitro (DIV) to assess the effect of time in culture on Ca2+ dynamics. We observed that both time and differentiation treatment are important factors associated with a reduced fraction of cells showing Ca2+ oscillations, paralleled by increased IPI times, in comparison with untreated ASCs. Both adipogenic and osteogenic differentiation resulted in a reduction in Ca2+ dynamics, such as the fraction of cells showing intracellular Ca2+ oscillations and their frequency. Adipogenic differentiation was associated with a more pronounced reduction of Ca2+ dynamics compared to cells differentiating towards the osteogenic fate. Changes in Ca2+ associated oscillations with a specific treatment had already occurred at 7 DIV. Finally, we observed a reduction in Ca2+ dynamics over time in untreated ASCs. These data suggest that adipogenic and osteogenic differentiation cell fates are associated with specific changes in spontaneous Ca2+ dynamics over time. While this observation is interesting and provides useful information to understand the functional correlates of stem cell differentiation, further studies are required to clarify the molecular and mechanistic correlates of these changes. This will allow us to better understand the causal relationship between Ca2+ dynamics and differentiation, potentially leading to the development of novel, more effective interventions for both bone regeneration and control of adipose growth.


1999 ◽  
Vol 58 (4) ◽  
pp. 1015-1024 ◽  
Author(s):  
Garry G. Duthie

Evidence from biochemical and animal models suggests that nutritional antioxidants should inhibit the development of diseases such as CHD and certain cancers. This evidence is not clearly corroborated by intervention studies in human subjects, due, in part, to inadequacies in current analytical methodologies. Althoughin vitroassays can give useful information on the attributes required by a compound to act as an antioxidant, results may have little nutritional relevance due to limited bioavailability. The determination of antioxidants in blood is often used as a measure of antioxidant statusin vivo, but may not necessarily reflect concentrations in target tissues where oxidative stress is greatest. In addition, the accumulation of antioxidants in selective tissues may not be apparent from plasma measurements. Participation in quality-control schemes for antioxidant determination by HPLC allows inter-laboratory comparison of results. Moderation of indices of oxidative damage to lipids, proteins and DNA can provide information on the effectiveness of compounds as nutritional antioxidants. However, most current methods of assessing oxidative stress are subject to confounding factors of non-oxidative origin. Assays for total antioxidant capacity in plasma differ in their type of oxidation source, target and measurement used to detect the oxidized product. They give different results, should never be used in isolation, and results should be interpreted with caution. Until more is known about the activity and metabolic fate of antioxidants, caution should be exercised in the consumption of large amounts of commercially-available antioxidant preparations.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fatima Saleh ◽  
Alice Carstairs ◽  
S. Leah Etheridge ◽  
Paul Genever

Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate.


2004 ◽  
Vol 89 (3) ◽  
pp. 1196-1199 ◽  
Author(s):  
Shamik J. Parikh ◽  
Marni Edelman ◽  
Gabriel I. Uwaifo ◽  
Renee J. Freedman ◽  
Mariama Semega-Janneh ◽  
...  

Abstract Several previous reports of small cohorts have found significantly higher serum 1,25-dihydroxy vitamin D (1,25-vit D) in obese compared with nonobese whites. Based on these reports and on recent in vitro studies of adipocytes which suggest that administration of 1,25-vit D can stimulate lipogenesis and inhibit lipolysis, some investigators have proposed that high 1,25-vit D may play a role in promoting or maintaining adipocyte triglyceride stores in obese adults. To test the hypothesis that obesity is commonly associated with increased 1,25-vit D, we examined the relationships between calciotropic hormones and body adiposity in a large cohort of healthy adults. Serum intact PTH, 25-hydroxy vitamin D, and 1,25-vit D were measured in the postabsorptive state in 302 healthy adults who were Caucasian (n = 190; 71% female), African-American (n = 84; 89% female), and of other race/ethnicity (n = 28; 61% female). Results from the 154 obese subjects [body mass index (BMI) 37.3 ± 5.8 kg/m2; range, 30.1–58.2 kg/m2] were compared with those from 148 nonobese (BMI 25.6 ± 2.9 kg/m2; range, 18.0–29.9 kg/m2) age-, race-, and sex-matched participants. Body composition was measured by dual energy x-ray absorptiometry. Serum intact PTH was positively correlated with both BMI (r = 0.42; P &lt; 0.0001) and body fat mass (r = 0.37; P &lt; 0.0001). Serum 25-hydroxy vitamin D was negatively correlated with BMI (r = −0.4; P &lt; 0.0001) and body fat mass (r = −0.41; P &lt; 0.0001). Serum 1,25-vit D was also negatively correlated with BMI (r = −0.26; P &lt; 0.0001) and body fat mass (r = −0.25; P = 0.0001). Serum 1,25-vit D was significantly lower in obese than nonobese subjects (105.7 ± 41.1 vs. 124.8 ± 36.7 pmol/liter; P &lt; 0.0001) in both Caucasian and African-American adults. We conclude that, because 1,25-vit D concentrations fall with increasing adiposity, it appears unlikely that elevation in 1,25-vit D is an important hormonal mechanism causing or maintaining obesity in adults.


Scientifica ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Tekeshwar Kumar ◽  
Vishal Jain

The aim of this study was to determine the impending antioxidant properties of different extracts of crude methanolic extract (CME) of leaves ofLannea coromandelica(L. coromandelica) and its two ethyl acetate (EAF) and aqueous (AqF) subfractions by employing various establishedin vitrosystems and estimation of total phenolic and flavonoid content. The results showed that extract and fractions possessed strong antioxidant activityin vitroand among them, EAF had the strongest antioxidant activity. EAF was confirmed for its highest phenolic content, total flavonoid contents, and total antioxidant capacity. The EAF was found to show remarkable scavenging activity on 2,2-diphenylpicrylhydrazyl (DPPH) (EC5063.9 ± 0.64 µg/mL), superoxide radical (EC508.2 ± 0.12 mg/mL), and Fe2+chelating activity (EC506.2 ± 0.09 mg/mL). Based on ourin vitroresults, EAF was investigated forin vivoantioxidant assay. Intragastric administration of the EAF can significantly increase levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) levels, and decrease malondialdehyde (MDA) content in the liver and kidney of CCl4-intoxicated rats. These new evidences show thatL. coromandelicabared antioxidant activity.


Biomaterials ◽  
2001 ◽  
Vol 22 (5) ◽  
pp. 429-438 ◽  
Author(s):  
Dennis von Heimburg ◽  
Sascha Zachariah ◽  
Hendrik Kühling ◽  
Ingo Heschel ◽  
Heike Schoof ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document