scholarly journals Molecular characterization and antifungal activity against non-dermatophyte molds causing onychomycosis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keyvan Pakshir ◽  
Mandana Kamali ◽  
Hasti Nouraei ◽  
Kamiar Zomorodian ◽  
Marjan Motamedi ◽  
...  

AbstractOnychomycosis is a fungal disease that caused by different types of fungi. Non-dermatophyte molds are a large saprophytic fungi group that live in nature and could affect traumatic nails. The aim of this study was to identify non-dermatophyte molds causing onychomycosis and evaluation of several antifungal activities against the isolates. The samples consisted of 50 non-dermatophyte molds isolated from patients with onychomycosis confirmed by direct and culture examination fungal. DNA was extracted, amplified, and sequenced. Disk diffusion method was used to evaluate itraconazole, fluconazole, ketoconazole, terbinafine, posaconazole, and econazole activity against the isolates. The species identified as: Aspergillus flavus 22 (44%), A. niger 12 (24%), A. fumigates, 3 (6%), A. sydowii 3 (6%), A. terreus 1 (2%), Penicillium commune 2 (4%), P. glabrum 2 (4%), P. chrysogenum, 1 (2%), Fusarium solani 3 (6%) and F. thapsinum 1 (2%). Most of the samples were sensitive to terbinafine, itraconazole, and econazole and 94% of the isolates were resistant to fluconazole. This study showed that Aspergillus species were the most common cause of non-dermatophyte mold onychomycosis and fluconazole was the most resistant antifungals. Care must be taken to choose the appropriate antifungal drug for a better cure.

2020 ◽  
Vol 10 (1) ◽  
pp. 1-4
Author(s):  
Omor Ahmed Chowdhury ◽  
Md Raihan Ahmed ◽  
Md Raihan Dipu ◽  
Md Aftab Uddin

The use of earphones has increased in recent times throughout the world especially among the different level of students such as school, college or university who have a higher tendency of sharing these among them. Unlike airline headsets, headphones and stethoscope ear-pieces, ear phones are often shared by multiple users and can be a potential medium for transmission of pathogens, which can give rise to various ear related infections. The objective of this study was to detect the pathogenic bacteria from the ear-phones used by the students of Stamford University Bangladesh. A total of 16 ear-phone swabs were collected by sterile cotton swabs. The swabs were inoculated onto blood agar and incubated aerobically overnight at 37oC. Microscopic observation and standard biochemical tests were performed to confirm the identification of all the bacterial isolates. Six presumptively identified Staphylococcus spp. (38%) were tested against six different types of antibiotics following Kirby-Bauer disk diffusion method. Isolates were found to be 84% resistant against Cotrimoxazole and demonstrated 100% sensitivity to Vancomycin and Ciprorofloxacin. The findings of this study suggest the users to disinfect their respective ear phones and not to exchange them as they may act as a potential source to transfer pathogenic and antibiotic resistant bacteria among the ear phone users. Stamford Journal of Microbiology, Vol.10 (1) 2020: 1-4


2020 ◽  
Vol 8 (6) ◽  
pp. 179-187
Author(s):  
Titik Taufikurohmah ◽  
Tasha Anandya Tantyani

This Research on the antibacterial and antifungal activity of nanosilver against Neisseria gonorrhoeae and Candida albincas fungi has been carried out. The purpose of this study was to determine antibacterial activity of nanosilver against Neisseria gonorrhoeae and antifungal activity against Candida albincas. Synthesis Nanosilver uses bottom up method and characterized using UV-Vis Spectrophotometer. Nanosliver concentrations used were 30, 40, 50, and 60 ppm. Antibacterial and antifungal activity tests using disk diffusion method. Observations obtained in form of the presence or absence of clear zones formed around paper discs indicate the inhibition of nanosilver on microbial growth. The results of testing the antifungal activity of Candida albicans on nanosilver with concentrations of 30, 40, 50 and 60 ppm resulted in clear zones of 9.73 nm, 11.46 nm, 11.93 nm, and 13 nm with fungal inhibition response categories is medium and strong. The results antibacterial activity test of Neisseria gonorrhoeae on nanosilver with concentrations of 30, 40, 50 and 60 ppm did not show any clear zone around the disc, it showed that nanosilver in this study did not have antibacterial activity against Neisseria gonorrhoeae.


2021 ◽  
pp. 55-61
Author(s):  
F. D. Mirzoeva ◽  
S. Satorov

Aim. To conduct a comparative assessment of the fungicidal activity of widespread and endemic species of the genus Allium growing in Tajikistan.Material and methods. The initial ethanol extracts were obtained from fresh plants of 15 onion species from different climatic and geographical regions of the Republic of Tajikistan. The antifungal activity of species of the genus Allium was studied against the yeast-like fungi Candida albicans using the disk diffusion method.Results: The highest fungicidal effect on the reference strain of Candida albicans was demonstrated by alcoholic extracts of the widespread wild species A. elatum Regel, A. oschaninii O. Fedtsch, A. obliguum L, and endemic species A. shugnanicum Vved. Low antifungal activity was found in extracts of 4 widespread wild-growing plant species - A. altaicum Pall, A. suworowii Regel, A. carolinianum DC, A.longicuspis L.Conclusions. The antifungal activity of 13 species of widespread wild-growing and 2 endemic species (A.shugnanicum Vved and A. pamiricum Wendelbo) was studied for the first time. A. elatum Regel, A. oschaninii O. Fedtsch, A. obliguum L, and endemic species A. shugnanicum Vved had a maximal inhibitory effect on the yeast fungus. The extracts obtained from the bulbs and seeds of the studied plants are characterized by the highest antifungal activity.


Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 380
Author(s):  
Jingjing Zhang ◽  
Fang Luan ◽  
Qing Li ◽  
Guodong Gu ◽  
Fang Dong ◽  
...  

Chemical modification is one of the most effective methods to improve the biological activity of chitin. In the current study, we modified C3-OH and C6-OH of chitin (CT) and successfully synthesized 6-amino-chitin (NCT) and 3,6-diamino-chitin (DNCT) through a series of chemical reactions. The structure of NCT and DNCT were characterized by elemental analyses, FT-IR, 13C NMR, XRD, and SEM. The inhibitory effects of CT, NCT, and DNCT against six kinds of phytopathogen (F. oxysporum f. sp. cucumerium, B. cinerea, C. lagenarium, P. asparagi, F. oxysporum f. niveum, and G. zeae) were evaluated using disk diffusion method in vitro. Meanwhile, carbendazim and amphotericin B were used as positive controls. Results revealed that 6-amino-chitin (NCT) and 3,6-diamino-chitin (DNCT) showed improved antifungal properties compared with pristine chitin. Moreover, DNCT exhibited the better antifungal property than NCT. Especially, while the inhibition zone diameters of NCT are ranged from 11.2 to 16.3 mm, DNCT are about 11.4–20.4 mm. These data demonstrated that the introduction of amino group into chitin derivatives could be key to increasing the antifungal activity of such compounds, and the greater the number of amino groups in the chitin derivatives, the better their antifungal activity was.


2009 ◽  
Vol 53 (10) ◽  
pp. 4559-4562 ◽  
Author(s):  
Jun Ishikawa ◽  
Tetsuo Maeda ◽  
Itaru Matsumura ◽  
Masato Yasumi ◽  
Hidetoshi Ujiie ◽  
...  

ABSTRACT We have evaluated the antifungal activity of micafungin in serum by using the disk diffusion method with serum-free and serum-added micafungin standard curves. Serum samples from micafungin-treated patients have been shown to exhibit adequate antifungal activity, which was in proportion to both the applied dose and the actual concentration of micafungin measured by high-performance liquid chromatography. The antifungal activity of micafungin in serum was also confirmed with the broth microdilution method.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 1179-1183
Author(s):  
R. ANITHA ◽  
B. KARTHIKEYAN ◽  
T. PANDIYARAJAN ◽  
S. VIGNESH ◽  
R. ARTHUR JAMES ◽  
...  

Silver nanoparticles are known to have inhibitory antimicrobial properties. In this letter, we report the synthesis of silver nanoparticles by using biocompatible, water soluble polymer through polyol method. Optical absorption spectrum of the prepared particles shows an absorption peak around 433 nm which is because of Surface Plasmon Resonance (SPR) of silver nanoparticles. Fourier transform infrared (FTIR) studies were done to identify the interaction of the nanoparticle and polymer. Transmission Electron Microscopic (TEM) studies confirm that the prepared particles are ~ 100 nm in size. Antifungal activity was studied through standard disk diffusion method. Studies show the prepared particles are potential candidates for the antifungal activity.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 130
Author(s):  
Fatimah Al-Otibi ◽  
Reem A. Al-Ahaidib ◽  
Raedah I. Alharbi ◽  
Rana M. Al-Otaibi ◽  
Gadah Albasher

The green biosynthesis of nanoparticles by plant extracts is an attractive and promising technique for medicinal applications. In the current study, we chose one of the daisy plants, Aaronsohnia factorovskyi (which grows in the Najd region, Saudi Arabia), to investigate its anti-microbial efficacy, in combination with silver nanoparticles. The biosynthesized nanoparticles were evaluated for antibacterial activity against Staphylococcus aureus, Bacillussubtilis (Gram-positive), Pseudomonas aeruginosa, and Escherichia coli, (Gram-negative) using the disc diffusion method, while the antifungal activity was assessed against Fusarium oxysporum, Fusarium solani, Helminthosporiumrostratum, and Alternariaalternata. The potential phytoconstituents of the plant extracts were identified by Fourier-transform infrared spectroscopy (FT-IR) techniques, the Field emission scanning electron microscopy (FE-SEM), Chromatography/Mass Spectrometry (GC-MS) techniques, and Zeta potential analysis. The current study revealed the ability of the tested plant extract to convert silver ions to silver nanoparticles with an average diameter of 104–140 nm. Biogenic Aaronsohnia factorovskyi-silver nanoparticles (AF-AgNPs) showed significant antibacterial activity against Staphylococcus aureus with inhibition zone diameter to 19.00 ± 2.94 mm, and antifungal activity against Fusarium solani, which reduced the growth of fungal yarn to 1.5 mm. The innovation of the present study is that the green synthesis of NPs, which is simple, cost-effective, provides stable nano-materials, and can be an alternative for the large-scale synthesis of silver nanoparticles.


2021 ◽  
Author(s):  
Rene Dembele ◽  
Wendpoulomdé A.D. Kaboré ◽  
Issiaka Soulama ◽  
Oumar Traoré ◽  
Nafissatou Ouédraogo ◽  
...  

Abstract Background The aim of this study was to determine the resistance of diarrheagenic Escherichia coli strains to β-lactams antibiotics and to perform the molecular characterization of Extended Spectrum β-lactamases (ESBL) and integrons genes. Methods This study was carried out from August 2013 to October 2015 and involved 31 DEC strains isolated from diarrheal stools samples collected from children less than five years of age. The identification and characterization of DEC strains was done through the standard biochemical tests those were confirmed using API 20E and Polymerase Chain Reaction (PCR). The determination of antimicrobial resistance was realized by the disk diffusion method then an amplification of the β-lactamase resistance genes and integrons by PCR was done. Results Out of the 419 E. coli strains identified, 31 isolates (7.4%) harbored the DEC virulence genes. From these DEC, 21 (67.7%) were ESBL-producing E. coli. Susceptibility to ESBL-producing E. coli showed that the majority of isolates were highly resistant to amoxicillin (77.4%), amoxicillin clavulanic acid (77.4%) and piperacillin (64.5%). The following antibiotic resistance genes and integron were identified from the 31 DEC isolates: blaTEM (6.5%), blaSHV (19.4%), blaOXA (38.7%) blaCTX−M (9.7%), Int1 (58.1%) and Int3 (19.4%). No class 2 integrons (Int2) was characterized. Conclusions Because of the high prevalence of multidrug-resistant ESBL organisms found in this study among pediatric patients, there is a need of stringent pediatric infection control measures.


Author(s):  
О.І. Chub ◽  
O.V. Bilchenko ◽  
S.V. Teslenko

The aim of the study is to determine the bacterial susceptibility-resistance levels of uropathogens depending on expression of different types of plasmid-mediated resistance genes. Methods. A cross-sectional study of105 patients with chronic pyelonephritis was carried. Screening for the presence of plasmid-mediated genes was performed by polymerase chain reaction. The antimicrobial susceptibility of isolates was determined by the Kirby Bauer disk diffusion method on Mueller–Hinton agar-containing plates. The size of zone around each antimicrobial disk was interpreted as sensitive, intermediate or resistant. Results. We demonstrated in vitro significant relationship of the resistance to aminopenicillins, cephalosporins and fluoroquinolones with an appearance of plasmid-mediated extended spectrum p-lactamases (ESBLs) types blaCTX-M, blaTEM, blaSHV and fluoroquinolones resistant genes (PMQR), including QnrA, AAC (6') - Ib-cr, QepA) in bacterial uropathogens. We also demonstrated in vitro significant relationship of the resistance to aminoglycosides with an appearance of plasmid-mediated genes blaCTX-M, QnrA and QepA. Conclusion. Were established in vitro significant relationships of the resistance to antimicrobials with an appearance of plasmid-mediated resistance genes in uropathogens. Were determined the most effective antibiotics against ESBL and PMQR producers. We have established the algorithm of diagnostic of plasmid-mediated resistance genes in uropathogens, isolated from patients with chronic pyelonephritis.


2021 ◽  
Vol 21 (2) ◽  
pp. 340
Author(s):  
Tukiran Tukiran ◽  
Suyatno Suyatno ◽  
Frisca Nadya Safitri

Several extracts of Syzygium species have been shown to inhibit the growth of some fungal microorganisms implicated in skin diseases, such as Candida albicans included S. samarangense. However, an antifungal test of C. Albicans on this plant's stem bark had not been reported. This study aimed to identify chemical constituents of the selected fraction from dichloromethane extracts of the stem bark of S. samarangense and determine the antifungal activity of the selected fraction at various concentrations on C. Albicans. The identification of the chemical constituent of the selected fraction has been performed by the LC-ESI-MS technique. An antifungal test of the selected fraction was carried out using the disk diffusion method. The samples used included the selected fraction with 5 variations of concentration (2.5; 2.0; 1.5; 1.0; and 0.5%), positive control (ketoconazole 1%), and negative control (DMSO). The results showed that the selected fraction has antifungal activity on C. Albicans. The results showed that the selected fraction contains four flavonoids: pinocembrin, uvangoletin, stercurensin, and aurentiacin. Due to antifungal activity on C. Albicans, it has moderate activity at a concentration of 2.5%, while concentrations of 2.0, 1.5, 1.0, and 0.5% have weak activity.


Sign in / Sign up

Export Citation Format

Share Document