denaturation rate
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
E. I. Melnikova ◽  
E. B. Stanislavskaia ◽  
K. Y. Baranova

The article deals with the problem of thermomechanical processing conditions influence on the properties of dry whey protein ingredient solutions: whey protein concentrates and isolates. The initial stage of obtaining fat property mimics is heat treatment of protein solutions to the temperature exceeding the denaturation threshold (65-75 °C). The next mechanical impact on the aggregates obtained leads to the formation of the particles similar to the fat globules. Protein mass fraction has a significant influence on the denaturation process. When its value becomes larger, the number of collisions between primary aggregates increases as well as the coagulation probability. In isolate solutions the denaturation rate was high, and it was observed intensive, irreversible coagulation at all protein concentrations. Aggregates were characterized as porous, branched, and polydisperse. Shear rate increase under mechanical impact resulted in even greater aggregates growth. Samples obtained at high shear rates were characterized by apparent physical instability. Large size of the protein aggregates was confirmed by a high degree of sedimentation. Suspensions were characterized as granular. The denaturation rate and coagulation intensity were lower in concentrate solutions. Presence of lactose helped to protect proteins from rapid loss of solubility by stabilizing their structure against thermal unfolding. The aggregates were characterized by a round compact shape, and the particle size didn’t differ a lot. Protein mass fraction change of the concentrate suspension samples did not have significant influence on the aggregates size and shape. Rotor rotation speed increase contributed to the particle size decrease. The solutions were characterized by the sedimentation stability and they had a uniform thick consistency imitating properties of the fat-containing products.



2004 ◽  
Vol 71 (4) ◽  
pp. 480-488 ◽  
Author(s):  
Jörg Hinrichs ◽  
Britta Rademacher

Pressure processing of foodstuff has been applied to produce or modify proteinaceous gel structures. In real pressure processing the treatment is non-isothermal, due to the adiabatic nature of the process and the heat loss from the product to the vessel. In order to estimate the effect of pressurization on milk constituents pressure and temperature dependent kinetics were determined separately from each other. In a detailed kinetic study whey protein isolate was treated under isobaric (200 to 800 MPa) and isothermal conditions (−2 to 70 °C), and the resulting degree of denaturation of β-lactoglobulin A and B and α-lactalbumin was analysed. Kinetic parameters of denaturation were estimated using a one step non-linear regression method which allowed a global fit of the whole data set. The isobaric isothermal denaturation of β-lactoglobulin and α-lactalbumin was found to follow third and second order kinetics, respectively. Isothermal pressure denaturation of both β-lactoglobulin fractions do not differ significantly and were characterized by an activation volume decreasing with increasing temperature from −10 to about −30 ml mol−1, which demonstrates that the denaturation rate is accelerated with increasing temperature. The activation energy of about 70 to 100 kJ mol−1 obtained for β-lactoglobulin A and B is not dependent to a great extent on the pressure which indicates that above 200 MPa denaturation rate is limited by the aggregation rate while pressure forces unfolding of the molecule.



2004 ◽  
Vol 70 (2) ◽  
pp. 293-298 ◽  
Author(s):  
Li-Chen CHEN ◽  
Shih-Bin LIN ◽  
Hui-Huang CHEN


1998 ◽  
Vol 05 (02) ◽  
pp. 615-634 ◽  
Author(s):  
V. P. Zhdanov ◽  
B. Kasemo

The past decade has been characterized by rapid progress in Monte Carlo simulations of protein folding in a solution. This review summarizes the main results obtained in the field, as a background to the major topic, namely corresponding advances in simulations of protein adsorption kinetics at solid–liquid interfaces. The latter occur via diffusion in the liquid towards the interface followed by actual adsorption, and subsequent irreversible conformational changes, resulting in more or less pronounced denaturation of the native protein structure. The conventional kinetic models describing these steps are based on the assumption that the denaturation transitions obey the first-order law with a single value of the denaturation rate constant kr. The validity of this assumption has been studied in recent lattice Monte Carlo simulations of denaturation of model protein-like molecules with different types of the monomer–monomer interactions. The results obtained indicate that, due to trapping in metastable states, (i) the transition of a molecule to the denatured state is usually nonexponential in time, i.e. it does not obey the first-order law, and (ii) the denaturation transitions of an ensemble of different molecules are characterized by different time scales, i.e. the denaturation process cannot be described by a single rate constant kr. One should, rather, introduce a distribution of values of this rate constant (physically, different values of kr reflect the fact that the transitions to the altered state occurs via different metastable states). The phenomenological kinetics of irreversible adsorption of proteins with and without a distribution of the denaturation rate constant values have been calculated in the limits where protein diffusion in the solution is, respectively, rapid or slow. In both cases, the adsorption kinetics with a distribution of kr are found to be close to those with a single–valued rate constant kr, provided that the average value of kr in the former case is equal to kr in the latter case. This conclusion holds even for wide distributions of kr. The consequences of this finding for the fitting of global experimental kinetics on the basis of phenomenological equations are briefly discussed.



1983 ◽  
Vol 211 (3) ◽  
pp. 771-774 ◽  
Author(s):  
T H Fischer

To increase our understanding of the physical nature of the Na+ and K+ forms of the Na+ + K+-dependent ATPase, thermal-denaturation studies were conducted in different types of ionic media. Thermal-denaturation measurements were performed by measuring the regeneration of ATPase activity after slow pulse exposure to elevated temperatures. Two types of experiments were performed. First, the dependence of the thermal-denaturation rate on Na+ and K+ concentrations was examined. It was found that both cations stabilized the pump protein. Also, K+ was a more effective stabilizer of the native state than was Na+. Secondly, a set of thermodynamic parameters was obtained by measuring the temperature-dependence of the thermal-denaturation rate under three ionic conditions: 60 mM-K+, 150 mM-Na+ and no Na+ or K+. It was found that ion-mediated stabilization of the pump protein was accompanied by substantial increases in activation enthalpy and entropy, the net effect being a less-pronounced increase in activation free energy.



1971 ◽  
Vol 121 (4) ◽  
pp. 721-730 ◽  
Author(s):  
P. J. Winterburn ◽  
C. F. Phelps

1. The binding of substrates and effectors to glucosamine synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was studied by using the ligand to alter the denaturation rate of the enzyme. The free enzyme bound fructose 6-phosphate, glucose 6-phosphate and UDP-N-acetylglucosamine, but not glutamine, AMP or UTP. Glucose 6-phosphate and AMP increased the binding of UDP-N-acetylglucosamine whereas UTP decreased the interaction between the enzyme and the feedback inhibitor. UDP-N-acetylglucosamine induced a glutamine-binding site on the enzyme. 2. Selective thermal or chemical denaturation revealed that the UDP-N-acetylglucosamine-binding site was not located at the catalytic site. The UTP site could not be distinguished from that for the nucleotide sugar. The AMP- and glucose 6-phosphate-binding sites were distinct from the catalytic and feedback-inhibitor-binding sites. 3. The specificity of the glutamine-binding site was investigated by using a series of potential analogues. 4. A model is proposed for the action of the effectors and the mechanism of the reaction discussed in kinetic and chemical terms.



1933 ◽  
Vol 17 (1) ◽  
pp. 21-34 ◽  
Author(s):  
H. Albert Barker

1. The denaturation rate of partially dried crystallizable egg albumin is greatly decreased by decreasing its water content. 2. The temperature of denaturation, defined as the temperature at which half of the protein becomes insoluble in distilled water after a definite time of heating, is a linear function of the relative humidity with which the protein is in equilibrium. 3. By applying the Arrhenius equation it is shown that the rate of heat denaturation at a given temperature is an exponential function of the relative humidity. 4. The application of the observed relations to the analysis of the mechanism of thermal death of microorganisms is suggested. 5. The water content of native and heat-denatured egg albumin is determined as a function of the relative humidity of water vapor. It is shown that the heat-denatured modification takes up approximately 80 per cent as much water at all relative humidities as does native egg albumin.



Sign in / Sign up

Export Citation Format

Share Document