scholarly journals Anatomical and Functional Gradients Shape Dynamic Functional Connectivity in the Human Brain

2021 ◽  
Author(s):  
Xiaolu Kong ◽  
Ru Kong ◽  
Csaba Orban ◽  
Peng Wang ◽  
shaoshi zhang ◽  
...  

Large-scale biophysical circuit models can provide mechanistic insights into the fundamental micro-scale and macro-scale properties of brain organization that shape complex patterns of spontaneous brain activity. By allowing local synaptic properties to vary across brain regions, recent large-scale circuit models have demonstrated better fit to empirical observations, such as inter-regional synchrony averaged over several minutes, i.e. static functional connectivity (FC). However, most previous models do not capture how inter-regional synchrony patterns vary over timescales of seconds, i.e., time-varying FC dynamics. Here we developed a spatially-heterogeneous large-scale dynamical circuit model that allowed for variation in local circuit properties across the human cortex. We showed that parameterizing local circuit properties with both anatomical and functional gradients was necessary for generating realistic static and dynamical properties of resting-state fMRI activity. Furthermore, empirical and simulated FC dynamics demonstrated remarkably similar sharp transitions in FC patterns, suggesting the existence of multiple attractors. We found that time-varying regional fMRI amplitude tracked multi-stability in FC dynamics. Causal manipulation of the large-scale circuit model suggested that sensory-motor regions were a driver of FC dynamics. Finally, the spatial distribution of sensory-motor drivers matched the principal gradient of gene expression that encompassed certain interneuron classes, suggesting that heterogeneity in excitation-inhibition balance might shape multi-stability in FC dynamics.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaolu Kong ◽  
Ru Kong ◽  
Csaba Orban ◽  
Peng Wang ◽  
Shaoshi Zhang ◽  
...  

AbstractLarge-scale biophysical circuit models provide mechanistic insights into the micro-scale and macro-scale properties of brain organization that shape complex patterns of spontaneous brain activity. We developed a spatially heterogeneous large-scale dynamical circuit model that allowed for variation in local synaptic properties across the human cortex. Here we show that parameterizing local circuit properties with both anatomical and functional gradients generates more realistic static and dynamic resting-state functional connectivity (FC). Furthermore, empirical and simulated FC dynamics demonstrates remarkably similar sharp transitions in FC patterns, suggesting the existence of multiple attractors. Time-varying regional fMRI amplitude may track multi-stability in FC dynamics. Causal manipulation of the large-scale circuit model suggests that sensory-motor regions are a driver of FC dynamics. Finally, the spatial distribution of sensory-motor drivers matches the principal gradient of gene expression that encompasses certain interneuron classes, suggesting that heterogeneity in excitation-inhibition balance might shape multi-stability in FC dynamics.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ruedeerat Keerativittayayut ◽  
Ryuta Aoki ◽  
Mitra Taghizadeh Sarabi ◽  
Koji Jimura ◽  
Kiyoshi Nakahara

Although activation/deactivation of specific brain regions has been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here, we investigated time-varying functional connectivity patterns across the human brain in periods of 30–40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding.


2021 ◽  
Author(s):  
Hadas Benisty ◽  
Andrew H Moberly ◽  
Sweyta Lohani ◽  
Daniel Barson ◽  
Ronald R Coifman ◽  
...  

Experimental work across a variety of species has demonstrated that spontaneously generated behaviors are robustly coupled to variation in neural activity within the cerebral cortex. Indeed, functional magnetic resonance imaging (fMRI) data suggest that functional connectivity in cortical networks varies across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these studies generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior typically observed in awake animals. Here, we took advantage of recent developments in wide-field, mesoscopic calcium imaging to monitor neural activity across the neocortex of awake mice. Applying a novel approach to quantifying time-varying functional connectivity, we show that spontaneous behaviors are more accurately represented by fast changes in the correlational structure versus the magnitude of large-scale network activity. Moreover, dynamic functional connectivity reveals subnetworks that are not predicted by traditional anatomical atlas-based parcellation of the cortex. These results provide insight into how behavioral information is represented across the mammalian neocortex and demonstrate a new analytical framework for investigating time-varying functional connectivity in neural networks.


Author(s):  
Sheree A Pagsuyoin ◽  
Joost R Santos

Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qing Cheng ◽  
Zeyi Liu ◽  
Guangquan Cheng ◽  
Jincai Huang

AbstractBeginning on December 31, 2019, the large-scale novel coronavirus disease 2019 (COVID-19) emerged in China. Tracking and analysing the heterogeneity and effectiveness of cities’ prevention and control of the COVID-19 epidemic is essential to design and adjust epidemic prevention and control measures. The number of newly confirmed cases in 25 of China’s most-affected cities for the COVID-19 epidemic from January 11 to February 10 was collected. The heterogeneity and effectiveness of these 25 cities’ prevention and control measures for COVID-19 were analysed by using an estimated time-varying reproduction number method and a serial correlation method. The results showed that the effective reproduction number (R) in 25 cities showed a downward trend overall, but there was a significant difference in the R change trends among cities, indicating that there was heterogeneity in the spread and control of COVID-19 in cities. Moreover, the COVID-19 control in 21 of 25 cities was effective, and the risk of infection decreased because their R had dropped below 1 by February 10, 2020. In contrast, the cities of Wuhan, Tianmen, Ezhou and Enshi still had difficulty effectively controlling the COVID-19 epidemic in a short period of time because their R was greater than 1.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Han Huang ◽  
Yang Zhou ◽  
Mingjie Qian ◽  
Zhaoqi Zeng

Land use transition is essentially one of the manifestations of land use/cover change (LUCC). Although a large number of studies have focused on land use transitions on the macro scale, there are few studies on the micro scale. Based on the data of two high-resolution land use surveys, this study used a land use transfer matrix and GeoDetector model to explore the spatial-temporal patterns and driving forces of land use transitions at the village level in Pu County over a ten-year period. Results show that Pu County has experienced a drastic process of land use transition. More than 80% of cropland and grassland have been converted to forest land, and over 90% of the expansion of built-up land came from the occupation of forest land, cropland, and grassland. The driving forces of land use transition and its magnitude depended on the type of land use. The implementation of the policy of returning farmland to forest, or grain-for-green (GFG) was the main driving force for the large-scale conversion of cultivated land to forest land in Pu County. In the context of policy of returning farmland to forests, the hilly and gully regions of China’s Loess Plateau must balance between protecting the ecology and ensuring food security. Promoting the comprehensive consolidation of gully land and developing modern agriculture may be an important way to achieve a win-win goal of ecological protection and food security.


Sign in / Sign up

Export Citation Format

Share Document