nuclear estrogen receptors
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 28 (6) ◽  
pp. 4256-4263
Author(s):  
Ilaria Ditonno ◽  
Giuseppe Losurdo ◽  
Maria Rendina ◽  
Maria Pricci ◽  
Bruna Girardi ◽  
...  

Colorectal cancer (CRC) is the second cause of cancer-related death in both sexes worldwide. As pre-menopausal women are less likely to develop CRC compared to age-matched men, a protective role for estrogens has been hypothesized. Indeed, two isoforms of nuclear estrogen receptors (ER) have been described: ERα and ERβ. While the binding of 17beta-estradiol to ERα activates anti-apoptotic pathways, the interaction with ERβ activates caspase-3, inducing apoptosis. In this regard, several pieces of evidence show that ERβ tends to be under-regulated in advanced adenomas and CRC, with an opposite trend for ERα. Furthermore, ERβ stimulation slows adenomatous polyp growth and modulates relevant CRC pathways. Based on such considerations, dietary modulation of ER is promising, particularly in subjects with genetic predisposition for CRC. Nevertheless, the main limitation is the lack of clinical trials on a large population scale.


Author(s):  
Victoria Luine

The demonstration of steroid binding proteins in brain areas outside of the hypothalamus was a key neuroendocrine discovery in the 1980s. These findings suggested that gonadal hormones, estradiol and testosterone, may have additional functions besides controlling reproduction through the hypothalamic–pituitary–gonadal axis (HPG) and that glucocorticoids may also influence neural functions not related to the hypothalamic–pituitary–adrenal axis (HPA). In the past 30 years, since the early 1990s, a body of neuroendocrine studies in animals has provided evidence for these hypotheses, and in 2020, it is generally accepted that steroid hormones exert robust influences over cognition—both learning and memory. Gonadal hormones, predominantly estrogens, enhance learning and memory in rodents and humans and influence cognitive processes throughout the lifespan. Gonadal hormones bind to classical nuclear estrogen receptors and to membrane receptors to influence cognition. In contrast to the generally positive effects of gonadal hormones on learning and memory, adrenal hormones (glucocorticoids in rodents or cortisol in primates) released during chronic stress have adverse effects on cognition, causing impairments in both learning and memory. However, emerging evidence suggests that impairments may be limited only to males, as chronic stress in females does not usually impair cognition and, in many cases, enhances it. The cognitive resilience of females to stress may result from interactions between the HPG and HPA axis, with estrogens exerting neuroprotective effects against glucocorticoids at both the morphological and neurochemical level. Overall, knowledge of the biological underpinnings of hormonal effects on cognitive function has enormous implications for human health and well-being by providing novel tools for mitigating memory loss, for treating stress-related disorders, and for understanding the bases for resilience versus susceptibility to stress.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Karen Cristina Rego Gregorio ◽  
Caroline Pancera Laurindo ◽  
Ubiratan Fabres Machado

Impaired circulating estrogen levels have been related to impaired glycemic homeostasis and diabetes mellitus (DM), both in females and males. However, for the last twenty years, the relationship between estrogen, glycemic homeostasis and the mechanisms involved has remained unclear. The characterization of estrogen receptors 1 and 2 (ESR1 and ESR2) and of insulin-sensitive glucose transporter type 4 (GLUT4) finally offered a great opportunity to shed some light on estrogen regulation of glycemic homeostasis. In this manuscript, we review the relationship between estrogen and DM, focusing on glycemic homeostasis, estrogen, ESR1/ESR2 and GLUT4. We review glycemic homeostasis and GLUT4 expression (muscle and adipose tissues) in Esr1−/− and Esr2−/− transgenic mice. We specifically address estradiol-induced and ESR1/ESR2-mediated regulation of the solute carrier family 2 member 4 (Slc2a4) gene, examining ESR1/ESR2-mediated genomic mechanisms that regulate Slc2a4 transcription, especially those occurring in cooperation with other transcription factors. In addition, we address the estradiol-induced translocation of ESR1 and GLUT4 to the plasma membrane. Studies make it clear that ESR1-mediated effects are beneficial, whereas ESR2-mediated effects are detrimental to glycemic homeostasis. Thus, imbalance of the ESR1/ESR2 ratio may have important consequences in metabolism, highlighting that ESR2 hyperactivity assumes a diabetogenic role.


2020 ◽  
Vol 38 (4) ◽  
pp. 957-966
Author(s):  
Agnieszka Wnuk ◽  
Karolina Przepiórska ◽  
Joanna Rzemieniec ◽  
Bernadeta Pietrzak ◽  
Małgorzata Kajta

Abstract Alzheimer’s disease (AD) is a multifactorial and severe neurodegenerative disorder characterized by progressive memory decline, the presence of Aβ plaques and tau tangles, brain atrophy, and neuronal loss. Available therapies provide moderate symptomatic relief but do not alter disease progression. This study demonstrated that PaPE-1, which has been designed to selectively activate non-nuclear estrogen receptors (ERs), has anti-AD capacity, as evidenced in a cellular model of the disease. In this model, the treatment of mouse neocortical neurons with Aβ (5 and 10 μM) induced apoptosis (loss of mitochondrial membrane potential, activation of caspase-3, induction of apoptosis-related genes and proteins) accompanied by increases in levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as reduced cell viability. Following 24 h of exposure, PaPE-1 inhibited Aβ-evoked effects, as shown by reduced parameters of neurotoxicity, oxidative stress, and apoptosis. Because PaPE-1 downregulated Aβ-induced Fas/FAS expression but upregulated that of Aβ-induced FasL, the role of PaPE-1 in controlling the external apoptotic pathway is controversial. However, PaPE-1 normalized Aβ-induced loss of mitochondrial membrane potential and restored the BAX/BCL2 ratio, suggesting that the anti-AD capacity of PaPE-1 particularly relies on inhibition of the mitochondrial apoptotic pathway. These data provide new evidence for an anti-AD strategy that utilizes the selective targeting of non-nuclear ERs with PaPE-1.


Endocrinology ◽  
2020 ◽  
Vol 161 (11) ◽  
Author(s):  
Amrita Ahluwalia ◽  
Neil Hoa ◽  
Lisheng Ge ◽  
Bruce Blumberg ◽  
Ellis R Levin

Abstract Mesenchymal stem cells can differentiate into mature chondrocytes, osteoblasts, and adipocytes. Excessive and dysfunctional visceral adipocytes increase upon menopause and importantly contribute to altered metabolism in postmenopausal women. We previously showed both plasma membrane and nuclear estrogen receptors alpha (ERα) with endogenous estrogen are required to suppress adipogenesis in vivo. Here we determined mechanisms by which these liganded ER pools collaborate to inhibit the peroxisome proliferator-activated gamma (PPARγ) gene and subsequent progenitor differentiation. In 3T3-L1 pre-adipocytes and adipose-derived stem cells (ADSC), membrane ERα signaled through phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) to enhance ERα nuclear localization, importantly at the PPARγ gene promoter. AKT also increased overall abundance and recruitment of co-repressors GATA3, β-catenin, and TCF4 to the PPARγ promoter. Membrane ERα signaling additionally enhanced wingless-integrated (Wnt)1 and 10b expression. The components of the repressor complex were required for estrogen to inhibit rosiglitazone-induced differentiation of ADSC and 3T3-L1 cells to mature adipocytes. These mechanisms whereby ER cellular pools collaborate to inhibit gene expression limit progenitor differentiation to mature adipocytes.


2019 ◽  
Vol 20 (20) ◽  
pp. 5178 ◽  
Author(s):  
Winda Ariyani ◽  
Wataru Miyazaki ◽  
Noriyuki Koibuchi

S-equol is a major bacterial metabolite of the soy isoflavone daidzein. It is known to be a phytoestrogen that acts by binding to the nuclear estrogen receptors (ERs) that are expressed in various brain regions, including the cerebellum. However, the effects of S-equol on cerebellar development and function have not yet been extensively studied. In this study, the effects of S-equol were evaluated using a mouse primary cerebellar culture, Neuro-2A clonal cells, and an astrocyte-enriched culture. S-equol augmented the dendrite arborization of Purkinje cells induced by triiodothyronine (T3) and the neurite growth of Neuro-2A cell differentiation. Such augmentation was suppressed by G15, a selective G-protein coupled ER (GPR30) antagonist, and ICI 182,780, an antagonist for ERs in both cultures. On the other hand, in astrocytes, S-equol induced cell proliferation and cell migration with an increase in the phosphorylated extracellular-signal-regulated kinase 1/2 and F-actin rearrangements. Such effects were suppressed by G15, but not by ICI. These findings indicated that S-equol may enhanced cerebellar development by affecting both neurons and astrocytes through several signaling pathways, including GPR30 and ERs. We here report a novel mechanism of S-equol in cerebellar development that may provide a novel possibility to use S-equol supplementation during development.


2018 ◽  
Vol 7 (12) ◽  
pp. 1472-1479
Author(s):  
Konstantin Yakimchuk ◽  
Chandrashekar Bangalore Revanna ◽  
Dan Huang ◽  
Jose Inzunza ◽  
Sam Okret

Well-defined physiological functions of estrogens are mediated via nuclear estrogen receptors α (ESR1) and β (ESR2). With regard to hematological malignancies, expression of ESR2 has been found in both B and T cell lymphomas. In addition to endogenous estrogens or selective ESR2 agonists, ESR2 signaling may be affected by both environmental synthetic estrogen-mimicking compounds and dietary phytoestrogens. In the present study, we demonstrate that oral exposure with either the synthetic compound bisphenol A (BPA) or the dietary phytoestrogen genistein reduced the growth of grafted murine T cell (EG7) and human B cell (Granta-519 mantle cell) lymphomas which both express ESR2. Suppression of lymphoma growth was due to reduced proliferation (BPA and genistein) and induction of apoptosis (genistein). Inhibition of lymphoma growth was seen at a BPA dose of 50 µg/kg body weight (BW)/day considered to be safe human exposure dose or a genistein dose of 1 mg/kg BW/day orally, which is reached in soy-rich diets. Thus, our study indicates that the environmental xenoestrogens BPA and genistein have anti-proliferative effects on ESR2-expressing lymphomas. Our data suggest that phytoestrogens may be considered as a dietary supplement for lymphoma patients and possibly for prevention of lymphoid malignancies.


2018 ◽  
Vol 100 (3) ◽  
pp. 757-772 ◽  
Author(s):  
Cinta Zapater ◽  
Gregorio Molés ◽  
Iciar Muñoz ◽  
Patricia I S Pinto ◽  
Adelino V M Canario ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document