expression marker
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 27 ◽  
Author(s):  
Jianhui Huang ◽  
Jian Lou ◽  
Xueni Liu ◽  
Yanru Xie

Background: Long non-coding RNAs (lncRNAs) have been reported to play important roles in cellular biological function. Aberrant expression of lncRNAs has been found to be related to the progression of various diseases. LncRNA prostate cancer gene expression marker 1 (PCGEM1) has been demonstrated to be involved in the initiation and progression of human cancers. However, to date, the clinical and functional significance of PCGEM1 expression in NSCLC progression remains unknown. Methods: The expression of LncRNA PCGEM1 and miR-152-3p in NSCLC tissues and cells was analyzed using quantitative real-time RT-PCR. Experiments using NSCLC cells were conducted to explore the influence of PCGEM1 on tumor cell proliferation, migration and invasion. Results: Increased expression of PCGEM1 was observed in NSCLC tissues and cells compared with the corresponding controls (all P < 0.001). PCGEM1 expression was associated with NSCLC patients’ lymph node metastasis and TNM stage (all P < 0.05), and the knockdown of PCGEM1 in NSCLC cells led to inhibited cell proliferation, migration and invasion. The further luciferase reporter assay and expression results showed that miR-152-3p might be a target gene of PCGEM1 and mediate the effects of PCGEM1 on cell proliferation, migration and invasion in NSCLC. Conclusion: Thus, the findings from the present study indicate that the NSCLC patients have significantly increased PCGEM1 and decreased miR-152-3p expression and that the knockdown of PCGEM1 may inhibit NSCLC cell proliferation, migration and invasion by sponging miR-152-3p. The PCGEM1/miR-152-3p axis may provide novel therapeutic targets for NSCLC treatment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shannon Woodhouse ◽  
Zhesi He ◽  
Hugh Woolfenden ◽  
Burkhard Steuernagel ◽  
Wilfried Haerty ◽  
...  

Abstract Background Associative transcriptomics has been used extensively in Brassica napus to enable the rapid identification of markers correlated with traits of interest. However, within the important vegetable crop species, Brassica oleracea, the use of associative transcriptomics has been limited due to a lack of fixed genetic resources and the difficulties in generating material due to self-incompatibility. Within Brassica vegetables, the harvestable product can be vegetative or floral tissues and therefore synchronisation of the floral transition is an important goal for growers and breeders. Vernalisation is known to be a key determinant of the floral transition, yet how different vernalisation treatments influence flowering in B. oleracea is not well understood. Results Here, we present results from phenotyping a diverse set of 69 B. oleracea accessions for heading and flowering traits under different environmental conditions. We developed a new associative transcriptomics pipeline, and inferred and validated a population structure, for the phenotyped accessions. A genome-wide association study identified miR172D as a candidate for the vernalisation response. Gene expression marker association identified variation in expression of BoFLC.C2 as a further candidate for vernalisation response. Conclusions This study describes a new pipeline for performing associative transcriptomics studies in B. oleracea. Using flowering time as an example trait, it provides insights into the genetic basis of vernalisation response in B. oleracea through associative transcriptomics and confirms its characterisation as a complex G x E trait. Candidate leads were identified in miR172D and BoFLC.C2. These results could facilitate marker-based breeding efforts to produce B. oleracea lines with more synchronous heading dates, potentially leading to improved yields.


Reproduction ◽  
2021 ◽  
Author(s):  
Rodrigo A Carrasco ◽  
Carlos E Leonardi ◽  
Sergio Pezo ◽  
Gregg P Adams

To elucidate the mechanism by which nerve growth factor (NGF) influences the LH secretory pathway in camelids, a series of experiments were done to determine the involvement of the hypothalamus (Experiment 1), the role of GnRH neurons (Experiment 2), and the effect of progesterone (Experiment 3) on the NGF-induced LH surge and ovulation in llamas. In Experiment 1, the declining phase of the NGF-induced LH surge was used to determine if the decline is a result of pituitary depletion or hypothalamic unresponsiveness. Female llamas were treated with NGF and, 7 hours later, assigned to three groups and given a second dose of NGF (n = 5), a dose of GnRH (n = 5), or saline (n = 6). The LH response was attenuated after the second dose of NGF vs. GnRH. In Experiment 2, Fos expression (marker of neuronal activation) in GnRH neurons was examined in the hypothalamus of llamas after NGF or saline treatment (n = 3 per group). Despite an LH surge in the NGF group but not in the saline group, no differences were detected between groups in Fos/GnRH co-expression. In Experiment 3, llamas in low-, medium-, and high-plasma progesterone groups (n = 4 per group) were treated with NGF. The NGF-induced LH surge did not differ among treatment groups. Results from the present study show that the induction of a preovulatory LH surge by NGF may be controlled by a novel pathway involving GnRH neuro-terminals downstream of the hypothalamus and is independent of progesterone influence.


Gene X ◽  
2020 ◽  
Vol 5 ◽  
pp. 100031 ◽  
Author(s):  
Bas Brinkhof ◽  
Bo Zhang ◽  
Zhanfeng Cui ◽  
Hua Ye ◽  
Hui Wang

2020 ◽  
Author(s):  
Shannon Woodhouse ◽  
Zhesi He ◽  
Hugh Woolfenden ◽  
Burkhard Steuernagel ◽  
Wilfried Haerty ◽  
...  

AbstractAssociative transcriptomics has been used extensively in Brassica napus to enable the rapid identification of markers correlated with traits of interest. However, within the important vegetable crop species, Brassica oleracea, the use of associative transcriptomics has been limited due to a lack of fixed genetic resources and the difficulties in generating material due to self-incompatibility. Within Brassica vegetables, the harvestable product can be vegetative or floral tissues and therefore synchronisation of the floral transition is an important goal for growers and breeders. Vernalisation is known to be a key determinant of the floral transition, yet how different vernalisation treatments influence flowering in B. oleracea is not well understood.Here, we present results from phenotyping a diverse set of 69 B. oleracea accessions for heading and flowering traits under different environmental conditions. We developed a new associative transcriptomics pipeline, and inferred and validated a population structure, for the phenotyped accessions. A genome-wide association study identified miR172D as a candidate for the vernalisation response. Gene expression marker association identified variation in expression of BoFLC.C2 as a further candidate for vernalisation response.This study provides insights into the genetic basis of vernalisation response in B. oleracea through associative transcriptomics and confirms its characterisation as a complex G x E trait. Candidate leads were identified in miR172D and BoFLC.C2. These results could facilitate marker-based breeding efforts to produce B. oleracea lines with more synchronous heading dates, potentially leading to improved yields.


2020 ◽  
Vol 81 (10-11) ◽  
pp. 661
Author(s):  
Bianca Schöne ◽  
Sabine Bergmann ◽  
Kathrin Lang ◽  
Ines Wagner ◽  
Alexander H. Schmidt ◽  
...  

Biology Open ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. bio041673 ◽  
Author(s):  
Lorena Vázquez-Iglesias ◽  
Leticia Barcia-Castro ◽  
Marta Rodríguez-Quiroga ◽  
María Páez de la Cadena ◽  
Javier Rodríguez-Berrocal ◽  
...  

2019 ◽  
Vol 20 (12) ◽  
pp. 2939 ◽  
Author(s):  
Saghafi ◽  
Taheri ◽  
Parkkila ◽  
Emameh

Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3′-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.


2018 ◽  
Vol 79 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Bianca Schöne ◽  
Sabine Bergmann ◽  
Kathrin Lang ◽  
Ines Wagner ◽  
Alexander H. Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document