Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ely Cheikh S’Id ◽  
Mohamed Degué ◽  
Chlouma Khalifa ◽  
Chamekh M’Bareck

Abstract The current investigation is focused on the removal of crystal violet (CV) from water by adsorption process (bach method). To achieve this purpose, specific membranes were prepared from poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) blends. The adsorption of CV onto AN69/PAA membranes was studied under various conditions: membrane composition, pH, contact time, initial concentration and temperature. To understand the effect of membrane morphology on adsorption process, scanning electronic microscopy (SEM) was employed to determine the features of section and membrane’s surface. From isotherm results, it was found that: the maximum adsorption capacity Q m was 1250 mg g−1, the Langmuir separation factor R L was lying between 0.33 and 0.76, the Freundlich intensity was higher than Unit (n = 1.25) and the adsorption process follows preferentially the Langmuir model (correlation constant R 2 = 0.99). The mechanism of adsorption is perfectly fitted by pseudo second order. The obtained results tend to confirm that the removal of dye molecules is due to the establishment of strong electrostatic interactions between cationic dye molecules and anionic membrane groups. The high adsorption capacity (1250 mg g−1) for the small dye molecules may open wide opportunities to apply these membranes in the removal of various hazardous pollutants commonly present in water.

Author(s):  
Carlos Grande ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-poly acrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto CS-g-PA surface. Adsorption equilibrium studies indicated pH 4.0 as the best pH for the adsorption process, while the maximum adsorption capacity for Pb2+ ions was 98 mg*g-1 and for Cu2+ was 164 mg*g-1, higher adsorption capacities than chitosan alone (CS), where Pb2+ was only 14.8 mg*g-1and Cu2+ was 140 mg*g-1, respectively. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data. All these results suggest that the new CS-g-PA polymers had potential as adsorbent for hazardous and toxic metal ions produced by different industries.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2241
Author(s):  
Rauf Foroutan ◽  
Seyed Jamaleddin Peighambardoust ◽  
Seyed Hadi Peighambardoust ◽  
Mirian Pateiro ◽  
Jose M. Lorenzo

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin–Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb’s free energy parameter (−20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of −45.4 for ACL and −56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3277
Author(s):  
Wenjuan Zhu ◽  
Zhiyong Yang ◽  
Akram Yasin ◽  
Yanxia Liu ◽  
Letao Zhang

The poly (acrylic acid-acrylamide/starch) composite was synthesized by solution polymerization, aiming to adsorb mercury (II) in water. The resulted copolymer was characterized by particle size exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), scanning electron microscopy (SEM) and dynamic light scattering particle size analyzer (DLS). It turned out that starch was successfully incorporated with the macromolecular polymer matrix and played a key role for improving the performance of the composites. These characterization results showed that the graft copolymer exhibited narrow molecular weight distribution, rough but uniform morphology, good thermal stability and narrow particle size distribution. The graft copolymer was used to remove Hg(II) ions from aqueous solution. The effects of contact time, pH value, initial mercury (II) concentration and temperature on the adsorption capacity of Hg(II) ions were researched. It was found that after 120 min of interaction, poly (acrylic acid-acrylamide/starch) composite achieved the maximum adsorption capacity of 19.23 mg·g−1 to Hg(II) ions with initial concentration of 15 mg·L−1, pH of 5.5 at 45 °C. Compared with other studies with the same purpose, the composites synthesized in this study present high adsorption properties for Hg(II) ion in dilute solution. The adsorption kinetics of Hg(II) on the poly (acrylic acid-acrylamide/starch) composite fits well with the pseudo second order model.


2019 ◽  
Vol 25 (6) ◽  
pp. 830-840 ◽  
Author(s):  
Lau Kia Li ◽  
Siti Nurul Ain Md Jamil ◽  
Luqman Chuah Abdullah ◽  
Nik Nor Liyana Nik Ibrahim ◽  
Adeyi Abel Adekanm ◽  
...  

This research reports application of artificial neural network (ANN) in investigation and optimisation of boron adsorption capacity in aqueous solution using amidoxime-modified poly(acrylonitrile-<i>co</i>-acrylic acid) (AO-modified poly(AN-<i>co</i>-AA)). Both feed-forward and recurrent ANN have been utilized to predict the adsorption potential of synthesised polymer. Three operational parameters, which are adsorbent dosage, initial pH and initial boron concentration during adsorption process were designed to study their effects on the removal capacity. The ANN was trained from experimental data and serviced to optimize, develop and create various prediction models in the process of boron adsorption by AO-modified poly(AN-<i>co</i>-AA). Among several models, radial basis function (RBF) with orthogonal least square (OLS) algorithm displayed good prediction on boron adsorption capacity with mean square error (MSE) and coefficient of determination (R<sup>2</sup>) at 0.000209 and 0.9985, respectively. With desirable the MSE and R<sup>2</sup> values, ANN worked as a promising prediction tool that was able to generate good estimate. The simulated maximum adsorption capacity of the synthesized polymer is 15.23 ± 1.05 mg boron/g adsorbent. Besides, from the results of ANN, the AO-modified poly(AN-<i>co</i>-AA) was proven to be a potential adsorbent for the removal of boron in wastewater treatment.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 193-205
Author(s):  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Taile Leswifi ◽  
Maurice S. Onyango

The presence of toxic metals in surface and natural waters, even at trace levels, poses a great danger to humans and the ecosystem. Although the combination of adsorption and coagulation techniques has the potential to eradicate this problem, the use of inappropriate media remains a major drawback. This study reports on the application of NaNO2/NaHCO3 modified sawdust-based cellulose nanocrystals (MCNC) as both coagulant and adsorbent for the removal of Cu, Fe and Pb from aqueous solution. The surface modified coagulants, prepared by electrostatic interactions, were characterized using Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS). The amount of coagulated/adsorbed trace metals was then analysed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). SEM analysis revealed the patchy and distributed floccules on Fe-flocs, which was an indication of multiple mechanisms responsible for Fe removal onto MCNC. A shift in the peak position attributed to C2H192N64O16 from 2θ = 30 to 24.5° occurred in the XRD pattern of both Pb- and Cu-flocs. Different process variables, including initial metal ions concentration (10–200 mg/L), solution pH (2–10), and temperature (25–45 °C) were studied in order to investigate how they affect the reaction process. Both Cu and Pb adsorption followed the Langmuir isotherm with a maximum adsorption capacity of 111.1 and 2.82 mg/g, respectively, whereas the adsorption of Fe was suggestive of a multilayer adsorption process; however, Fe Langmuir maximum adsorption capacity was found to be 81.96 mg/g. The sequence of trace metals removal followed the order: Cu > Fe > Pb. The utilization of this product in different water matrices is an effective way to establish their robustness.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 111
Author(s):  
Maria Mihăilescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
Petru Negrea ◽  
Narcis Duțeanu ◽  
...  

Gold is one of the precious metals with multiple uses, whose deposits are much smaller than the global production needs. Therefore, extracting maximum gold quantities from industrial diluted solutions is a must. Am-L-GA is a new material, obtained by an Amberlite XAD7-type commercial resin, functionalized through saturation with L-glutamic acid, whose adsorption capacity has been proved to be higher than those of other materials utilized for gold adsorption. In this context, this article presents the results of a factorial design experiment for optimizing the gold recovery from residual solutions resulting from the electronics industry using Am-L-GA. Firstly, the material was characterized using atomic force microscopy (AFM), to emphasize the material’s characteristics, essential for the adsorption quality. Then, the study showed that among the parameters taken into account in the analysis (pH, temperature, initial gold concentration, and contact time), the initial gold concentration in the solution plays a determinant role in the removal process and the contact time has a slightly positive effect, whereas the pH and temperature do not influence the adsorption capacity. The maximum adsorption capacity of 29.27 mg/L was obtained by optimizing the adsorption process, with the control factors having the following values: contact time ~106 min, initial Au(III) concentration of ~164 mg/L, pH = 4, and temperature of 25 °C. It is highlighted that the factorial design method is an excellent instrument to determine the effects of different factors influencing the adsorption process. The method can be applied for any adsorption process if it is necessary to reduce the number of experiments, to diminish the resources or time consumption, or for expanding the investigation domain above the experimental limits.


2016 ◽  
Vol 75 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Lucas Meili ◽  
Társila Santos da Silva ◽  
Daniely Carlos Henrique ◽  
João Inácio Soletti ◽  
Sandra Helena Vieira de Carvalho ◽  
...  

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L−1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g−1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


Sign in / Sign up

Export Citation Format

Share Document