hydrophobic tunnel
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

Nano Energy ◽  
2021 ◽  
pp. 106784
Author(s):  
Cheng Du ◽  
Chenglong Qiu ◽  
Zhongying Fang ◽  
Ping Li ◽  
Yijing Gao ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qing Zhong ◽  
Yanyu Zhao ◽  
Fangfei Ye ◽  
Zaiyu Xiao ◽  
Gaoxingyu Huang ◽  
...  

AbstractWntless (WLS), an evolutionarily conserved multi-pass transmembrane protein, is essential for secretion of Wnt proteins. Wnt-triggered signaling pathways control many crucial life events, whereas aberrant Wnt signaling is tightly associated with many human diseases including cancers. Here, we report the cryo-EM structure of human WLS in complex with Wnt3a, the most widely studied Wnt, at 2.2 Å resolution. The transmembrane domain of WLS bears a GPCR fold, with a conserved core cavity and a lateral opening. Wnt3a interacts with WLS at multiple interfaces, with the lipid moiety on Wnt3a traversing a hydrophobic tunnel of WLS transmembrane domain and inserting into membrane. A β-hairpin of Wnt3a containing the conserved palmitoleoylation site interacts with WLS extensively, which is crucial for WLS-mediated Wnt secretion. The flexibility of the Wnt3a loop/hairpin regions involved in the multiple binding sites indicates induced fit might happen when Wnts are bound to different binding partners. Our findings provide important insights into the molecular mechanism of Wnt palmitoleoylation, secretion and signaling.


Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 118-121
Author(s):  
Cedric J. Hahn ◽  
Olivier N. Lemaire ◽  
Jörg Kahnt ◽  
Sylvain Engilberge ◽  
Gunter Wegener ◽  
...  

Ethane, the second most abundant hydrocarbon gas in the seafloor, is efficiently oxidized by anaerobic archaea in syntrophy with sulfate-reducing bacteria. Here, we report the 0.99-angstrom-resolution structure of the proposed ethane-activating enzyme and describe the specific traits that distinguish it from methane-generating and -consuming methyl-coenzyme M reductases. The widened catalytic chamber, harboring a dimethylated nickel-containing F430 cofactor, would adapt the chemistry of methyl-coenzyme M reductases for a two-carbon substrate. A sulfur from methionine replaces the oxygen from a canonical glutamine as the nickel lower-axial ligand, a feature conserved in thermophilic ethanotrophs. Specific loop extensions, a four-helix bundle dilatation, and posttranslational methylations result in the formation of a 33-angstrom-long hydrophobic tunnel, which guides the ethane to the buried active site as confirmed with xenon pressurization experiments.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rebecca N. D’Amico ◽  
Yuliana K. Bosken ◽  
Kathleen F. O’Rourke ◽  
Alec M. Murray ◽  
Woudasie Admasu ◽  
...  

Networks of noncovalent amino acid interactions propagate allosteric signals throughout proteins. Tryptophan synthase (TS) is an allosterically controlled bienzyme in which the indole product of the alpha subunit (αTS) is transferred through a 25 Å hydrophobic tunnel to the active site of the beta subunit (βTS). Previous nuclear magnetic resonance and molecular dynamics simulations identified allosteric networks in αTS important for its function. We show here that substitution of a distant, surface-exposed network residue in αTS enhances tryptophan production, not by activating αTS function, but through dynamically controlling the opening of the indole channel and stimulating βTS activity. While stimulation is modest, the substitution also enhances cell growth in a tryptophan-auxotrophic strain of Escherichia coli compared to complementation with wild-type αTS, emphasizing the biological importance of the network. Surface-exposed networks provide new opportunities in allosteric drug design and protein engineering, and hint at potential information conduits through which the functions of a metabolon or even larger proteome might be coordinated and regulated.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248781
Author(s):  
Junsen Tong ◽  
Lingchen Tan ◽  
Young Jun Im

Human ORP3 belongs to the oxysterol-binding protein (OSBP) family of lipid transfer proteins and is involved in lipid trafficking and cell signaling. ORP3 localizes to the ER-PM interfaces and is implicated in lipid transport and focal adhesion dynamics. Here, we report the 2.6–2.7 Å structures of the ORD (OSBP-related domain) of human ORP3 in apo-form and in complex with phosphatidylinositol 4-phosphate. The ORP3 ORD displays a helix grip β-barrel fold with a deep hydrophobic pocket which is conserved in the OSBP gene family. ORP3 binds PI(4)P by the residues around tunnel entrance and in the hydrophobic pocket, whereas it lacks sterol binding due to the narrow hydrophobic tunnel. The heterologous expression of the ORDs of human ORP3 or OSBP1 rescued the lethality of seven ORP (yeast OSH1-OSH7) knockout in yeast. In contrast, the PI(4)P-binding site mutant of ORP3 did not complement the OSH knockout cells. The N-terminal PH domain and FFAT motif of ORP3 are involved in protein targeting but are not essential in yeast complementation. This observation suggests that the essential function conserved in the ORPs of yeast and human is mediated by PI(4)P-binding of the ORD domain. This study suggests that the non-vesicular PI(4)P transport is a conserved function of all ORPs in eukaryotes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hiroyuki Kajiura ◽  
Takuya Yoshizawa ◽  
Yuji Tokumoto ◽  
Nobuaki Suzuki ◽  
Shinya Takeno ◽  
...  

AbstractSome plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms—EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants.


2020 ◽  
pp. jbc.RA120.016637
Author(s):  
Anne M. Gardner ◽  
Paul R. Gardner

The substrates O2 and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin.  Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O2 and NO movements and conserved amino acids at the E11, G8, E2, E7, B10 and F7 positions within the globin domain control activation.  In the cooperative and allosteric mechanism, O2 migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/IleE15 pair and LeuE11, which NO permeates and leverages upon to trigger the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7 and water, which allows FADH2 to reduce the ferric iron, which forms the stable ferric-superoxide-TyrB10/GlnE7 complex, which reacts with internalized NO with a bimolecular rate constant of 1010 M-1 s-1 forming nitrate, which migrates to the CD loop and unfurls the spring-like structure.  To restart the cycle, LeuE11 toggles back to the ferric iron.  Actuating electron transfer with O2 and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme.  Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.


2020 ◽  
Vol 48 (17) ◽  
pp. 9918-9930
Author(s):  
Philippe Carpentier ◽  
Chloé Leprêtre ◽  
Christian Basset ◽  
Thierry Douki ◽  
Stéphane Torelli ◽  
...  

Abstract MiaE (2-methylthio-N6-isopentenyl-adenosine37-tRNA monooxygenase) is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide 2-methylthio-N6-isopentenyl-adenosine (ms2i6A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N6–4-hydroxyisopentenyl-adenosine (ms2io6A37). Here, we report the in vivo activity, biochemical, spectroscopic characterization and X-ray crystal structure of MiaE from Pseudomonas putida. The investigation demonstrates that the putative pp-2188 gene encodes a MiaE enzyme. The structure shows that Pp-MiaE consists of a catalytic diiron(III) domain with a four alpha-helix bundle fold. A docking model of Pp-MiaE in complex with tRNA, combined with site directed mutagenesis and in vivo activity shed light on the importance of an additional linker region for substrate tRNA recognition. Finally, krypton-pressurized Pp-MiaE experiments, revealed the presence of defined O2 site along a conserved hydrophobic tunnel leading to the diiron active center.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Nitish Sathyanarayanan ◽  
Giuseppe Cannone ◽  
Lokesh Gakhar ◽  
Nainesh Katagihallimath ◽  
Ramanathan Sowdhamini ◽  
...  

Abstract Substrate channeling is a mechanism for the internal transfer of hydrophobic, unstable or toxic intermediates from the active site of one enzyme to another. Such transfer has previously been described to be mediated by a hydrophobic tunnel, the use of electrostatic highways or pivoting and by conformational changes. The enzyme PaaZ is used by many bacteria to degrade environmental pollutants. PaaZ is a bifunctional enzyme that catalyzes the ring opening of oxepin-CoA and converts it to 3-oxo-5,6-dehydrosuberyl-CoA. Here we report the structures of PaaZ determined by electron cryomicroscopy with and without bound ligands. The structures reveal that three domain-swapped dimers of the enzyme form a trilobed structure. A combination of small-angle X-ray scattering (SAXS), computational studies, mutagenesis and microbial growth experiments suggests that the key intermediate is transferred from one active site to the other by a mechanism of electrostatic pivoting of the CoA moiety, mediated by a set of conserved positively charged residues.


2019 ◽  
Author(s):  
Georgia L. Isom ◽  
Nicolas Coudray ◽  
Mark R. MacRae ◽  
Collin T. McManus ◽  
Damian C. Ekiert ◽  
...  

Gram-negative bacteria are surrounded by an outer membrane composed of phospholipids and lipopolysaccharide (LPS), which acts as a barrier to the environment and contributes to antibiotic resistance. While mechanisms of LPS transport have been well characterised, systems that translocate phospholipids across the periplasm, such as MCE (Mammalian Cell Entry) transport systems, are less well understood. Here we show that E. coli MCE protein LetB (formerly YebT), forms a ∼0.6 megadalton complex in the periplasm. Our cryo-EM structure reveals that LetB consists of a stack of seven modular rings, creating a long hydrophobic tunnel through the centre of the complex. LetB is sufficiently large to span the gap between the inner and outer membranes, and mutations that shorten the tunnel abolish function. Lipids bind inside the tunnel, suggesting that it functions as a pathway for lipid transport. Cryo-EM structures in the open and closed states reveal a dynamic tunnel lining, with implications for gating or substrate translocation. Together, our results support a model in which LetB establishes a physical link between the bacterial inner and outer membranes, and creates a hydrophobic pathway for the translocation of lipids across the periplasm, to maintain the integrity of the outer membrane permeability barrier.


Sign in / Sign up

Export Citation Format

Share Document