scholarly journals Influences of Sn on Properties of Ag-Based and Cu-Based Brazing Filler Metals

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1403
Author(s):  
Qingcheng Luo ◽  
Songbai Xue ◽  
Jie Wu

Ag-based and Cu-based brazing filler metals, which are the most widely used brazing materials in industrial manufacturing, have excellent gap-filling properties and can braze almost all the metallic materials and their alloys, except for the low-melting-point metals such as Al and Mg. Therefore, Ag-based and Cu-based brazing filler metals have attracted great attention. In this review, three series of typical Ag-based filler metals: the Ag-Cu, Ag-Cu-Zn, and Ag-Cu-Zn-Sn alloys; and three series of Cu-based filler metals: the crystalline and amorphous Cu-P filler metals, as well as the Cu-Zn filler metals, were chosen as the representatives. The latest research progress on Sn-containing Ag-based and Cu-based brazing filler metals is summarized, and the influences of Sn on the melting characteristics, wettability, microstructure, and mechanical properties of the selected filler metals are analyzed. Based on these, the problems and corresponding solutions in the investigation and application of the Sn-containing Ag-based and Cu-based filler metals are put forward, and the research and development trends of these filler metals are proposed.

Author(s):  
Changyi Hu ◽  
Yan Wei ◽  
Hongzhong Cai ◽  
Li Chen ◽  
Xian Wang ◽  
...  

Pt-based alloys are being developed for high-temperature applications with the aim of replacing some of the currently used Ni-based superalloys (NBSAs) and benchmark alloy, PM2000. The Pt-based superalloys have a similar structure to the NBSAs and can potentially be used at higher temperatures and in more aggressive environments because Pt is more chemically inert and has a higher melting point. In this paper, the recent progress in research and development of Pt-based superalloys is overviewed. Firstly, the composition optimization and structural design of Pt-base superalloys are introduced. The structural characteristics, mechanical properties, oxidation resistance and corrosion behavior of Pt-Al ternary, quaternary and multiple superalloys are summarized. Finally, directions for further research and application of Pt-base superalloys are analyzed and prospected.


2020 ◽  
Vol 34 (08) ◽  
pp. 2050064 ◽  
Author(s):  
Meng Zhao ◽  
Liang Zhang ◽  
Lei Sun ◽  
Ming-yue Xiong ◽  
Nan Jiang ◽  
...  

In this study, the effects of Cu nanoparticles on the melting characteristics, wettability, interfacial reaction and mechanical properties of [Formula: see text]–[Formula: see text] [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] composite solders were investigated. Results show that the properties of the composite solder containing Cu nanoparticles were improved effectively. With the addition of Cu nanoparticles, the melting point of [Formula: see text]–[Formula: see text] solder decreased significantly, and the spreading area and the shear strength were increased by 10.3% and 23.2%, respectively. For the performance, the optimal addition of Cu nanoparticles was 0.7%. In addition, the growth of interfacial intermetallic compounds in [Formula: see text]–[Formula: see text] solder joints was inhibited by adding Cu nanoparticles.


2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


Alloy Digest ◽  
1998 ◽  
Vol 47 (12) ◽  

Abstract UGIMA 4404 (UGIMA 316L) is identical to UGINE 4404 (AISI 316L) in analysis, corrosion resistance, mechanical properties, and forging and welding ability, but not with respect to machinability. A specific melting process creates inclusions of malleable oxides with a low melting point. The inclusions improve machinability by 20-30% compared with AISI 316L (1.4404) stainless steel. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-735. Producer or source: Ugine-Savoie.


2010 ◽  
Vol 72 ◽  
pp. 46-52 ◽  
Author(s):  
Laurent Royer ◽  
Stéphane Mathieu ◽  
Christophe Liebaut ◽  
Pierre Steinmetz

For energy production and also for the glass industry, finding new refractory alloys which could permit to increase the process temperatures to 1200°C or more is a permanent challenge. Chromium base alloys can be good candidates, considering the melting point of Cr itself, and also its low corrosion rate in molten glass. Two families of alloys have been studied for this purpose, Cr-Mo-W and Cr-Ta-X alloys (X= Mo, Si..). A finer selection of compositions has been done, to optimize their chemical and mechanical properties. Kinetics of HT oxidation by air, of corrosion by molten glass and also creep properties of several alloys have been measured up to 1250°C. The results obtained with the best alloys (Cr-Ta base) give positive indications as regards the possibility of their industrial use.


2020 ◽  
Vol 9 (1) ◽  
pp. 700-715 ◽  
Author(s):  
Wei Jian ◽  
David Hui ◽  
Denvid Lau

AbstractRecent advances in biomedicine largely rely on the development in nanoengineering. As the access to unique properties in biomaterials is not readily available from traditional techniques, the nanoengineering becomes an effective approach for research and development, by which the performance as well as the functionalities of biomaterials has been greatly improved and enriched. This review focuses on the main materials used in biomedicine, including metallic materials, polymers, and nanocomposites, as well as the major applications of nanoengineering in developing biomedical treatments and techniques. Research that provides an in-depth understanding of material properties and efficient enhancement of material performance using molecular dynamics simulations from the nanoengineering perspective are discussed. The advanced techniques which facilitate nanoengineering in biomedical applications are also presented to inspire further improvement in the future. Furthermore, the potential challenges of nanoengineering in biomedicine are evaluated by summarizing concerned issues and possible solutions.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Sixiang Zhai ◽  
Qingying Liu ◽  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
...  

With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jose E. Perez ◽  
Florian Fage ◽  
David Pereira ◽  
Ali Abou-Hassan ◽  
Sophie Asnacios ◽  
...  

Abstract Background The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells’ mechanical properties remains poorly understood. Results Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods. Conclusions Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.


2014 ◽  
Vol 891-892 ◽  
pp. 1639-1644 ◽  
Author(s):  
Kazutaka Mukoyama ◽  
Koushu Hanaki ◽  
Kenji Okada ◽  
Akiyoshi Sakaida ◽  
Atsushi Sugeta ◽  
...  

The aim of this study is to develop a statistical estimation method of S-N curve for iron and structural steels by using their static mechanical properties. In this study, firstly, the S-N data for pure iron and structural steels were extracted from "Database on fatigue strength of Metallic Materials" published by the Society of Materials Science, Japan (JSMS) and S-N curve regression model was applied based on the JSMS standard, "Standard Evaluation Method of Fatigue Reliability for Metallic Materials -Standard Regression Method of S-N Curve-". Secondly, correlations between regression parameters and static mechanical properties were investigated. As a result, the relationship between the regression parameters and static mechanical properties (e.g. fatigue limit E and static tensile strength σB) showed strong correlations, respectively. Using these correlations, it is revealed that S-N curve for iron and structural steels can be predicted easily from the static mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document