Binder Jetting and Infiltration of Metal Matrix Nanocomposites

Author(s):  
Quinton Porter ◽  
Zhijian Pei ◽  
Chao Ma

Abstract The ability to produce a dense part of Al-based metal matrix nanocomposites using binder jetting followed by infiltration was investigated. A green density above 1.58 g/cm3 was determined to be necessary for spontaneous direct liquid infiltration to commence, and a press-compaction-assisted binder jetting process is needed to achieve this benchmark. A green density of 1.64±0.02 g/cm3 only resulted in a density of 1.65±0.03 g/cm3 by sintering at 1050 °C, which showed that densification is not possible with sintering alone. However, infiltration with Al-6061 produced specimens with a density of 2.74±0.04 g/cm3, which corresponded to a density improvement of 65%. Moreover, the infiltrated specimens had a low open porosity of 2.71±0.95% and a high hardness of 54 HRA. This study suggests that it is feasible to manufacture parts with complex shapes and superior mechanical properties using binder Jetting followed by infiltration.

Author(s):  
Akash Saxena ◽  
Neera Singh ◽  
Bhupendra Singh ◽  
Devendra Kumar ◽  
Kishor Kumar Sadasivuni ◽  
...  

In the present work, phase, microstructure, and wear properties of Al2O3-reinforced Fe–Si alloy-based metal matrix nanocomposites have been studied. Composites using 2 wt.% and 5 wt.% of Si and rest Fe powder mix were synthesized via powder metallurgy and sintered at different temperature schedules. Iron–silicon alloy specimens were found to have high hardness and high wear resistance in comparison to pure iron specimens. Addition of 5 wt.% and 10 wt.% alumina reinforcement in Fe–Si alloy composition helped in developing iron aluminate (FeAl2O4) phase in composites which further improved the mechanical properties i.e. high hardness and wear resistance. Formation of iron aluminate phase occurs due to reactive sintering between Fe and Al2O3 particles. It is expected that the improved behavior of prepared nanocomposites as compared to conventional metals will be helpful in finding their use for wide industrial applications.


2021 ◽  
Vol 5 (2) ◽  
pp. 54
Author(s):  
Quinton Porter ◽  
Xiaochun Li ◽  
Chao Ma

The ability to produce metal matrix nanocomposites via pressing and infiltration was validated. Al/TiC nanocomposite was used as the model material. Pressing the powder in a die yielded cylindrical specimens with a green density of 1.98 ± 0.05 g/cm3, which was increased to only 2.11 ± 0.12 g/cm3 by sintering. Direct infiltration of the pressed specimens at 1050 °C for 3.5 h yielded specimens with a density of 3.07 ± 0.08 g/cm3, an open porosity of 3.06 ± 1.40%, and an areal void fraction of 8.09 ± 2.67%. The TiC nanoparticles were verified to be well dispersed using energy-dispersive X-ray spectroscopy. The measured hardness of 64 ± 3 HRA makes it a promising material for structural applications in industries such as aerospace and automotive.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Seyed Kiomars Moheimani ◽  
Mehran Dadkhah ◽  
Mohammad Hossein Mosallanejad ◽  
Abdollah Saboori

Metal matrix nanocomposites (MMNCs) with high specific strength have been of interest for numerous researchers. In the current study, Mg matrix nanocomposites reinforced with AlN nanoparticles were produced using the mechanical stirring-assisted casting method. Microstructure, hardness, physical, thermal and electrical properties of the produced composites were characterized in this work. According to the microstructural evaluations, the ceramic nanoparticles were uniformly dispersed within the matrix by applying a mechanical stirring. At higher AlN contents, however, some agglomerates were observed as a consequence of a particle-pushing mechanism during the solidification. Microhardness results showed a slight improvement in the mechanical strength of the nanocomposites following the addition of AlN nanoparticles. Interestingly, nanocomposite samples were featured with higher electrical and thermal conductivities, which can be attributed to the structural effect of nanoparticles within the matrix. Moreover, thermal expansion analysis of the nanocomposites indicated that the presence of nanoparticles lowered the Coefficient of Thermal Expansion (CTE) in the case of nanocomposites. All in all, this combination of properties, including high mechanical strength, thermal and electrical conductivity, together with low CTE, make these new nanocomposites very promising materials for electro packaging applications.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2016 ◽  
Vol 32 (9) ◽  
pp. 930-953 ◽  
Author(s):  
Z. Hu ◽  
G. Tong ◽  
D. Lin ◽  
C. Chen ◽  
H. Guo ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Payodhar Padhi ◽  
Sachikanta Kar

Addition of nano particles, even in quantities as small as 2 weight percent can enhance the hardness or yield strength by a factor as high as 2. There are several methods for the production of metal matrix nanocomposites including mechanical alloying, vertex process, and spray deposition and so forth. However, the above processes are expensive. Solidification processing is a relatively cheaper route. During solidification processing, nano particulates tend to agglomerate as a result of van der Waals forces and thus proper dispersion of the nano particulate in metal matrix is a challenge. In the present study a noncontact method, where the ultrasonic probe is not in direct contact with the liquid metal, was attempted to disperse nanosized SiC particulates in aluminum matrix. In this method, the mold was subjected to ultrasonic vibration. Hardness measurements and microstructural studies using HRTEM were carried out on samples taken from different locations of the nanocomposite ingot cast by this method.


Sign in / Sign up

Export Citation Format

Share Document