scholarly journals Sub-Planckian Scale and Limits for f(R) Models

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Polina Petriakova ◽  
Arkady Popov ◽  
Sergey Rubin

We study the universe evolution starting from the sub-Planckian scale to present times. The requirement for an exponential expansion of the space with the observed metric as a final stage leads to significant restrictions on the parameter values of a function f(R). An initial metric of the Universe is supposed to be maximally symmetric with the positive curvature.

Author(s):  
Mohammed B. Al-Fadhli

The recent Planck Legacy release confirmed the existence of an enhanced lensing amplitude in the cosmic microwave background (CMB) power spectra, which endorses the positive curvature of the early Universe with a confidence level exceeding 99%. In this study, the pre-existing curvature is incorporated to extend the field equations where the derived wave function of the Universe is utilized to model Universe evolution with reference to the scale factor of the early Universe and its radius of curvature upon the emission of the CMB. The wave function reveals both positive and negative solutions, implying that matter and antimatter of early Universe plasma evolve in opposite directions as distinct Universe sides. The wave function indicates that a nascent hyperbolic expansion is followed by a first phase of decelerating expansion away from early plasma during the first 10 Gyr, and then, a second phase of accelerating expansion in reverse directions, whereby both Universe sides free-fall towards each other under gravitational acceleration. Simulations of the predicted conformal curvature evolution demonstrate the fast orbital speed of outer stars owing to the external fields exerted on galaxies as they travel through conformally curved space-time. Finally, the wave function predicts an eventual time-reversal phase comprising rapid spatial contraction that culminates in a Big Crunch, signalling a cyclic Universe. These findings reveal that early plasma could have separated and evolved into distinct sides that collectively and geometrically influencing the Universe evolution, physically explanting the effects attributed to dark matter and energy.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850188 ◽  
Author(s):  
E. Elizalde ◽  
S. D. Odintsov ◽  
E. O. Pozdeeva ◽  
S. Yu. Vernov

The cosmological dynamics of a non-locally corrected gravity theory, involving a power of the inverse d’Alembertian, is investigated. Casting the dynamical equations into local form, the fixed points of the models are derived, as well as corresponding de Sitter and power-law solutions. Necessary and sufficient conditions on the model parameters for the existence of de Sitter solutions are obtained. The possible existence of power-law solutions is investigated, and it is proven that models with de Sitter solutions have no power-law solutions. A model is found, which allows to describe the matter-dominated phase of the Universe evolution.


2021 ◽  
pp. 2150052
Author(s):  
Qihong Huang ◽  
Ruanjing Zhang ◽  
Jun Chen ◽  
He Huang ◽  
Feiquan Tu

In this paper, we analyze the universe evolution and phase space behavior of the Umami Chaplygin model, where the Umami Chaplygin fluid replaces both a dark energy and a dark and baryonic matter. We find the Umami Chaplygin model can be stable against perturbations under some conditions and can be used to explain the late-time cosmic acceleration. The results of phase space analysis show that there exists a late-time accelerated expansion attractor with [Formula: see text], which indicates the Umami Chaplygin fluid can behave as a cosmological constant. Moreover, the Umami Chaplygin model can describe the expansion history of the universe. The evolutionary trajectories of the statefinder diagnostic pairs and the finite time future singularities are also discussed.


2021 ◽  
Vol 59 (11) ◽  
pp. 1106-1112
Author(s):  
L. A. Gribov ◽  
V. I. Baranov ◽  
I. V. Mikhailov

2020 ◽  
Vol 497 (2) ◽  
pp. 1590-1602
Author(s):  
A Hernández-Almada ◽  
Genly Leon ◽  
Juan Magaña ◽  
Miguel A García-Aspeitia ◽  
V Motta

ABSTRACT Recently, a phenomenologically emergent dark energy (PEDE) model was presented with a dark energy density evolving as $\widetilde{\Omega }_{\rm {DE}}(z) = \Omega _{\rm {DE,0}}[ 1 - {\rm {tanh}}({\log }_{10}(1+z))]$, i.e. with no degree of freedom. Later on, a generalized model was proposed by adding one degree of freedom to the PEDE model, encoded in the parameter Δ. Motivated by these proposals, we constrain the parameter space ($h,\Omega _m^{(0)}$) and ($h,\Omega _m^{(0)}, \Delta$) for PEDE and generalized emergent dark energy (GEDE), respectively, by employing the most recent observational (non-)homogeneous and differential age Hubble data. Additionally, we reconstruct the deceleration and jerk parameters and estimate yield values at z = 0 of $q_0 = -0.784^{+0.028}_{-0.027}$ and $j_0 = 1.241^{+0.164}_{-0.149}$ for PEDE and $q_0 = -0.730^{+0.059}_{-0.067}$ and $j_0 = 1.293^{+0.194}_{-0.187}$ for GEDE using the homogeneous sample. We report values on the deceleration–acceleration transition redshift with those reported in the literature within 2σ CL. Furthermore, we perform a stability analysis of the PEDE and GEDE models to study the global evolution of the Universe around their critical points. Although the PEDE and GEDE dynamics are similar to the standard model, our stability analysis indicates that in both models there is an accelerated phase at early epochs of the Universe evolution.


1986 ◽  
Vol 119 ◽  
pp. 509-510
Author(s):  
C. Sivaram

Recently it has been shown that many of the puzzling features of conventional cosmological models (such as the horizon and flatness problems) could be explained by invoking inflationary models of the early universe with an exponential expansion phase at very early epochs. These models have the added advantage that they are able to make a definite prediction about the present matter density in the universe, i.e. they require that the density be exactly equal to the closure density which in turn can be easily estimated from the Hubble constant now known to within a factor of two. Now if one goes back to an earlier idea that explored the possibility of unusual clustering of quasar redshifts around z = 2 or 3, we get an example of another cosmological model with a definite prediction for the present overall matter density. This is a modified version of the Eddington-Lemaitre type of model which naturally accommodates such features as a clustering of quasars at certain epochs. From these models one can get a prediction for the present matter density which would be an involved function of the Hubble constant and the redshifts at which such clustering occurs. It can be shown that if such clustering had occurred at any z, the present matter density predicted would be substantially smaller than the corresponding closure density. The conclusion is that any clustering of quasar redshifts is incompatiable with inflationary universe models, indirectly providing observational support for these new theories.


2020 ◽  
Vol 35 (26) ◽  
pp. 2050216
Author(s):  
Partha Sarathi Debnath

Causal cosmological evolutions in Randall Sundrum type II (RS) braneworld gravity with Gauss Bonnet coupling and dissipative effects are discussed here. Causal theory of dissipative effects are illustrated by Full Israel Stewart theory are implemented. We consider the numerical solutions of evolutions and analytic solutions as a special case for extremely non-linear field equation in Randall Sundrum type II braneworld gravity with Gauss Bonnet coupling. Cosmological models admitting Power law expansion, Exponential expansion and evolution in the vicinity of the stationary solution of the universe are investigated for Full Israel Stewart theory. Stability of equilibrium or fixed points related to the dynamics of evolution in Full Israel Stewart theory in Randall Sundrum type II braneworld gravity together with Gauss Bonnet coupling are disclosed here.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040042
Author(s):  
V. F. Panov ◽  
O. V. Sandakova ◽  
E. V. Kuvshinova ◽  
D. M. Yanishevsky

An anisotropic cosmological model with expansion and rotation and the Bianchi type IX metric has been constructed within the framework of general relativity theory. The first inflation stage of the Universe filled with a scalar field and an anisotropic fluid is considered. The model describes the Friedman stage of cosmological evolution with subsequent transition to accelerated exponential expansion observed in the present epoch. The model has two rotating fluids: the anisotropic fluid and dust-like fluid. In the approach realized in the model, the anisotropic fluid describes the rotating dark energy.


2018 ◽  
Vol 33 (01) ◽  
pp. 1850005
Author(s):  
Augusto S. Freitas

In a recent paper, He, Gao and Cai [Phys. Rev. D 89, 083510 (2014)], found a rigorous proof, based on analytical solutions of the Wheeler–DeWitt (WDWE) equation, of the spontaneous creation of the universe from nothing. The solutions were obtained from a classical potential [Formula: see text], where [Formula: see text] is the scale factor. In this paper, we present a complementary (to that of He, Gao and Cai) solution to the WDWE equation with [Formula: see text]. I have found an exponential expansion of the true vacuum bubble for all scenarios. In all scenarios, we found a power law behavior of the scale factor result which is in agreement with another studies.


Sign in / Sign up

Export Citation Format

Share Document