scholarly journals T1SEstacker: A tri-layer stacking model effectively predicts bacterial type 1 secreted proteins based on C-terminal non-RTX-motif sequence features

2021 ◽  
Author(s):  
Zewei Chen ◽  
Ziyi Zhao ◽  
Xinjie Hui ◽  
Junya Zhang ◽  
Yixue Hu ◽  
...  

The proteins secreted through type 1 secretion systems often play important roles in pathogenicity of various gram-negative bacteria. However, the type 1 secretion mechanism remains unknown. In this research, we observed the sequence features of RTX proteins, a major class of type 1 secreted substrates. We found striking non-RTX-motif amino acid composition patterns at the C-termini, most typically exemplified by the enriched '[FLI][VAI]' at the most C-terminal two positions. Machine-learning models, including deep-learning models, were trained using these sequence-based non-RTX-motif features, and further combined into a tri-layer stacking model, T1SEstacker, which predicted the RTX proteins accurately, with a 5-fold cross-validated sensitivity of ~0.89 at the specificity of ~0.94. Besides substrates with RTX motifs, T1SEstacker can also well distinguish non-RTX-motif type 1 secreted proteins, further suggesting their potential existence of common secretion signals. In summary, we made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified common sequence-based features at the C-termini, and developed a stacking model that can predict type 1 secreted proteins accurately.

2021 ◽  
Author(s):  
Ilyas Alav ◽  
Jessica Kobylka ◽  
Miriam S. Kuth ◽  
Klaas M. Pos ◽  
Martin Picard ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 339
Author(s):  
Denise Dekker ◽  
Frederik Pankok ◽  
Thorsten Thye ◽  
Stefan Taudien ◽  
Kwabena Oppong ◽  
...  

Wound infections are common medical problems in sub-Saharan Africa but data on the molecular epidemiology are rare. Within this study we assessed the clonal lineages, resistance genes and virulence factors of Gram-negative bacteria isolated from Ghanaian patients with chronic wounds. From a previous study, 49 Pseudomonas aeruginosa, 21 Klebsiellapneumoniae complex members and 12 Escherichia coli were subjected to whole genome sequencing. Sequence analysis indicated high clonal diversity with only nine P. aeruginosa clusters comprising two strains each and one E. coli cluster comprising three strains with high phylogenetic relationship suggesting nosocomial transmission. Acquired beta-lactamase genes were observed in some isolates next to a broad spectrum of additional genetic resistance determinants. Phenotypical expression of extended-spectrum beta-lactamase activity in the Enterobacterales was associated with blaCTX-M-15 genes, which are frequent in Ghana. Frequently recorded virulence genes comprised genes related to invasion and iron-uptake in E. coli, genes related to adherence, iron-uptake, secretion systems and antiphagocytosis in P. aeruginosa and genes related to adherence, biofilm formation, immune evasion, iron-uptake and secretion systems in K. pneumonia complex. In summary, the study provides a piece in the puzzle of the molecular epidemiology of Gram-negative bacteria in chronic wounds in rural Ghana.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 341
Author(s):  
Nathalie Dautin

The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.


Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 4005-4013 ◽  
Author(s):  
Ruifu Zhang ◽  
John J. LiPuma ◽  
Carlos F. Gonzalez

Bacterial type IV secretion systems (T4SS) perform two fundamental functions related to pathogenesis: the delivery of effector molecules to eukaryotic target cells, and genetic exchange. Two T4SSs have been identified in Burkholderia cenocepacia K56-2, a representative of the ET12 lineage of the B. cepacia complex (Bcc). The plant tissue watersoaking (Ptw) T4SS encoded on a resident 92 kb plasmid is a chimera composed of VirB/D4 and F-specific subunits, and is responsible for the translocation of effector(s) that have been linked to the Ptw phenotype. The bc-VirB/D4 system located on chromosome II displays homology to the VirB/D4 T4SS of Agrobacterium tumefaciens. In contrast to the Ptw T4SS, the bc-VirB/D4 T4SS was found to be dispensable for Ptw effector(s) secretion, but was found to be involved in plasmid mobilization. The fertility inhibitor Osa did not affect the secretion of Ptw effector(s) via the Ptw system, but did disrupt the mobilization of a RSF1010 derivative plasmid.


2020 ◽  
Author(s):  
Hanh N. Lam ◽  
Tannia Lau ◽  
Adam Lentz ◽  
Jessica Sherry ◽  
Alejandro Cabrera-Cortez ◽  
...  

ABSTRACTAntibiotic resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from non-pathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs, but do not inhibit bacterial growth. Here we describe identification of an isomer, 4EpDN, that is two-fold more potent (IC50 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated Twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injestisome T3SS. 4EpDN reduced the number of T3SS basal bodies detected on the surface of Y. enterocolitica, as visualized using a fluorescent derivative of YscD, an inner membrane ring with low homology to flagellar protein FliG. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.IMPORTANCETraditional antibiotics target both pathogenic and commensal bacteria, resulting in a disruption of the microbiota, which in turn is tied to a number of acute and chronic diseases. The bacterial type III secretion system (T3SS) is an appendage used by many bacterial pathogens to establish infection, but is largely absent from commensal members of the microbiota. In this study, we identify a new derivative of the cyclic peptomer class of T3SS inhibitors. These compounds inhibit the T3SS of the nosocomial ESKAPE pathogen Pseudomonas aeruginosa and enteropathogenic Yersinia and Salmonella. The impact of cyclic peptomers is specific to the T3SS, as other bacterial secretory systems are unaffected. Importantly, cyclic peptomers completely block replication of Chlamydia trachomatis, the causative agent of genital, eye, and lung infections, in human cells, a process that requires the T3SS. Therefore, cyclic peptomers represent promising virulence blockers that can specifically disarm a broad spectrum of Gram-negative pathogens.


2020 ◽  
Author(s):  
Yupeng Wang ◽  
Rosario B. Jaime-Lara ◽  
Abhrarup Roy ◽  
Ying Sun ◽  
Xinyue Liu ◽  
...  

AbstractWe propose SeqEnhDL, a deep learning framework for classifying cell type-specific enhancers based on sequence features. DNA sequences of “strong enhancer” chromatin states in nine cell types from the ENCODE project were retrieved to build and test enhancer classifiers. For any DNA sequence, sequential k-mer (k=5, 7, 9 and 11) fold changes relative to randomly selected non-coding sequences were used as features for deep learning models. Three deep learning models were implemented, including multi-layer perceptron (MLP), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). All models in SeqEnhDL outperform state-of-the-art enhancer classifiers including gkm-SVM and DanQ, with regard to distinguishing cell type-specific enhancers from randomly selected non-coding sequences. Moreover, SeqEnhDL is able to directly discriminate enhancers from different cell types, which has not been achieved by other enhancer classifiers. Our analysis suggests that both enhancers and their tissue-specificity can be accurately identified according to their sequence features. SeqEnhDL is publicly available at https://github.com/wyp1125/SeqEnhDL.


2021 ◽  
pp. 107864
Author(s):  
N. Zohreh Pourhassan ◽  
Sander H.J. Smits ◽  
Jung Hoon Ahn ◽  
Lutz Schmitt

2020 ◽  
Vol 49 (D1) ◽  
pp. D651-D659
Author(s):  
Jiawei Wang ◽  
Jiahui Li ◽  
Yi Hou ◽  
Wei Dai ◽  
Ruopeng Xie ◽  
...  

Abstract Gram-negative bacteria utilize secretion systems to export substrates into their surrounding environment or directly into neighboring cells. These substrates are proteins that function to promote bacterial survival: by facilitating nutrient collection, disabling competitor species or, for pathogens, to disable host defenses. Following a rapid development of computational techniques, a growing number of substrates have been discovered and subsequently validated by wet lab experiments. To date, several online databases have been developed to catalogue these substrates but they have limited user options for in-depth analysis, and typically focus on a single type of secreted substrate. We therefore developed a universal platform, BastionHub, that incorporates extensive functional modules to facilitate substrate analysis and integrates the five major Gram-negative secreted substrate types (i.e. from types I–IV and VI secretion systems). To our knowledge, BastionHub is not only the most comprehensive online database available, it is also the first to incorporate substrates secreted by type I or type II secretion systems. By providing the most up-to-date details of secreted substrates and state-of-the-art prediction and visualized relationship analysis tools, BastionHub will be an important platform that can assist biologists in uncovering novel substrates and formulating new hypotheses. BastionHub is freely available at http://bastionhub.erc.monash.edu/.


Blood ◽  
2020 ◽  
Author(s):  
Xinyu Yang ◽  
Xiaoye Cheng ◽  
Yiting Tang ◽  
Xianhui Qiu ◽  
Zhongtai Wang ◽  
...  

Bacterial infection not only stimulates innate immune responses but also activates the coagulation cascades. Over-activation of the coagulation system in bacterial sepsis leads to disseminated intravascular coagulation (DIC), a life-threatening condition. However, the mechanisms by which bacterial infection activates the coagulation cascade are not fully understood. Here we show that type 1 interferons (IFNs), widely expressed family of cytokines that orchestrate innate antiviral and antibacterial immunity, mediate bacterial infection-induced DIC through amplifying the release of high mobility box group box 1 (HMGB1) into the blood stream. Inhibition of the expression of type 1 IFNs, disruption of their receptor IFN-α/βR or downstream effector (e.g., HMGB1) uniformly decreased Gram-negative bacteria-induced DIC. Mechanistically, extracellular HMGB1 markedly increased the pro-coagulant activity of tissue factor (TF) by promoting the externalization of phosphatidylserine (PS) to the outer cell surface, where PS assembles a complex of cofactor-proteases of the coagulation cascades. These findings not only provide novel insights into the link between innate immune responses and coagulation, but also open a new avenue for developing novel therapeutic strategies to prevent DIC in sepsis.


Sign in / Sign up

Export Citation Format

Share Document