scholarly journals Autophagy and Apoptosis Induced in U87 MG Glioblastoma Cells by Hypericin-Mediated Photodynamic Therapy Can Be Photobiomodulated with 808 nm Light

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1703
Author(s):  
Viktoria Pevna ◽  
Georges Wagnières ◽  
Veronika Huntosova

Glioblastoma is one of the most aggressive types of tumors. Although few treatment options are currently available, new modalities are needed to improve prognosis. In this context, photodynamic therapy (PDT) is a promising adjuvant treatment modality. In the present work, hypericin-mediated PDT (hypericin-PDT, 2 J/cm2) of U87 MG cells is combined with (2 min, 15 mW/cm2 at 808 nm) photobiomodulation (PBM). We observed that PBM stimulates autophagy, which, in combination with PDT, increases the treatment efficacy and leads to apoptosis. Confocal fluorescence microscopy, cytotoxicity assays and Western blot were used to monitor apoptotic and autophagic processes in these cells. Destabilization of lysosomes, mitochondria and the Golgi apparatus led to an increase in lactate dehydrogenase activity, oxidative stress levels, LC3-II, and caspase-3, as well as a decrease of the PKCα and STAT3 protein levels in response to hypericin-PDT subcellular concentration in U87 MG cells. Our results indicate that therapeutic hypericin concentrations can be reduced when PDT is combined with PBM. This will likely allow to reduce the damage induced in surrounding healthy tissues when PBM-hypericin-PDT is used for in vivo tumor treatments.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


2009 ◽  
Vol 111 (4) ◽  
pp. 741-752 ◽  
Author(s):  
Yu Zhen ◽  
Yuanlin Dong ◽  
Xu Wu ◽  
Zhipeng Xu ◽  
Yan Lu ◽  
...  

Background Some anesthetics have been suggested to induce neurotoxicity, including promotion of Alzheimer's disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. The authors set out to assess the effects of nitrous oxide and/or isoflurane on apoptosis and beta-amyloid (Abeta) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for 6 h. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Abeta levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for 6 h induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for 6 h induced caspase-3 activation and apoptosis, and increased levels of beta-site amyloid precursor protein-cleaving enzyme and Abeta in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Abeta generation was reduced by a broad caspase inhibitor, Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by gamma-secretase inhibitor L-685,458, but potentiated by exogenously added Abeta. Conclusion These results suggest that the common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Abeta levels. The generated Abeta may further potentiate apoptosis to form another round of apoptosis and Abeta generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed.


2001 ◽  
Vol 354 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Jeremy P. E. SPENCER ◽  
Hagen SCHROETER ◽  
Gunter KUHNLE ◽  
S. Kaila S. SRAI ◽  
Rex M. TYRRELL ◽  
...  

There is considerable current interest in the cytoprotective effects of natural antioxidants against oxidative stress. In particular, epicatechin, a major member of the flavanol family of polyphenols with powerful antioxidant properties in vitro, has been investigated to determine its ability to attenuate oxidative-stress-induced cell damage and to understand the mechanism of its protective action. We have induced oxidative stress in cultured human fibroblasts using hydrogen peroxide and examined the cellular responses in the form of mitochondrial function, cell-membrane damage, annexin-V binding and caspase-3 activation. Since one of the major metabolites of epicatechin in vivo is 3′-O-methyl epicatechin, we have compared its protective effects with that of epicatechin. The results provide the first evidence that 3′-O-methyl epicatechin inhibits cell death induced by hydrogen peroxide and that the mechanism involves suppression of caspase-3 activity as a marker for apoptosis. Furthermore, the protection elicited by 3′-O-methyl epicatechin is not significantly different from that of epicatechin, suggesting that hydrogen-donating antioxidant activity is not the primary mechanism of protection.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Zhai ◽  
Wei Xu ◽  
Yayun Liu ◽  
Kun Qian ◽  
Yanling Xiong ◽  
...  

Background. Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods. C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results. The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions. HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Song ◽  
Dan Liu ◽  
Liang Feng ◽  
Zhenhai Zhang ◽  
Xiaobin Jia ◽  
...  

Cisplatin (CDDP) is a potent antitumor compound widely used with a notably side effect of nephrotoxicity inducing oxidative stress and apoptosis in kidneys. Standardized extract from the leaves of theGinkgo bilobatrees, labeled EGb761 (EGb), has been available on the market for its beneficial effects. The purpose of this study was to investigate the ability of EGb to prevent the nephrotoxic effect of CDDP and the mechanisms involved. Our results showed that EGb treatment restored the levels of creatinine, BUN, MDA, NO, SOD, CAT, GPx, and GSSG/GSH ratio in kidneys after CDDP injection. EGb also exhibited a tendency to decrease the elevated NF-κB translocation and caspase-3 protein levels in CDDP-treated kidneys. We further used a porcine kidney proximal tubular epithelial (LLC-PK1) cell line, finding that EGb accordingly inhibited ROS accumulation and iNOS increase induced by CDDPin vitro. EGb also attenuated IκB degradation and p65 NF-κB phosphorylation triggered by CDDP in LLC-PK1 cells. But EGb failed to influence CDDP-stimulated caspase cascade. These findings suggested that EGb’s renoprotective effect might be mediated by not only its well-known antioxidant activity but also the anti-inflammatory activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hyeon Ju Yim ◽  
Jung Hwa Lim ◽  
Min Hee Kim ◽  
Uk Namgung ◽  
Sang Ryong Lee ◽  
...  

Background.Sibjeondaebo-tang(SJDBT) has been used to treat diverse disorders including neuropsychiatric disabilities in traditional Korean medicine.Objective. The present study aims to investigate the potential effects of SJDBT on neuroprotection against Aβ peptide-induced damage usingin vitroculture andin vivorat brain systems.Materials and Methods. PC12 cell viability was analyzed by MTT assay, and neurite arborizations and caspase 3 protein signals in cultured PC12 cells andin vivocortical neurons were analyzed by immunofluorescence staining. Phospho-Erk1/2 protein was analyzed by immunofluorescence staining and western blot analysis.Results. In PC12 cells, atrophied cell body and reduced neurite extension by Aβtreatment were recovered by SJDBT treatment. Caspase 3 protein signals were increased in Aβ-treated PC12 cells, but SJDBT treatment decreased apoptotic cell death. Caspase 3 activation in cortical neurons, which was induced similarly by Aβtreatment, was reduced by SJDBT treatment. Furthermore, phospho-Erk1/2 protein levels, which had been decreased by Aβtreatment, were elevated in the cortical neurons by SJDBT treatment.Conclusion. These data show that SJDBT may play a role in protecting from damages induced by Aβin neuronal tissue and further suggest that SJDBT can be explored as the potential therapeutic target for AD treatments in human.


Author(s):  
Ivan Mfouo Tynga ◽  
Heidi Abrahamse

Deregulation of cell growth and development lead to cancer, a severe condition that claims millions of lives worldwide. Targeted or selective approaches used during cancer treatment determine the efficacy and outcome of the therapy. In order to enhance specificity and targeting and better treatment options for cancer, novel and alternative modalities are currently under development. Photodynamic therapy has the potential to eradicate cancer and combination therapy would yield even greater outcomes. Nanomedicine-aided cancer therapy shows enhanced specificity for cancer cells and minimal side-effects coupled with effective cancer destruction both in vitro and in vivo. Nanocarriers used in drug-delivery systems are well able to penetrate cancer stem cell niche, simultaneously killing cancer cells and eradicate drug-resistant cancer stem cells, yielding therapeutic efficiency up to 100 fold against drug-resistant cancer in comparison with free drugs. Safety precautions should be considered when using Nano-mediated therapy as the effects of extended exposure to biological environments are still to be determined.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaoli Cheng ◽  
Dan Liu ◽  
Ruinan Xing ◽  
Haixu Song ◽  
Xiaoxiang Tian ◽  
...  

Doxorubicin (DOX) is an effective anticancer drug, but its therapeutic use is limited by its cardiotoxicity. The principal mechanisms of DOX-induced cardiotoxicity are oxidative stress and apoptosis in cardiomyocytes. Orosomucoid 1 (ORM1), an acute-phase protein, plays important roles in inflammation and ischemic stroke; however, the roles and mechanisms of ORM1 in DOX-induced cardiotoxicity remain unknown. Therefore, in the present study, we aimed to investigate the function of ORM1 in cardiomyocytes experiencing DOX-induced oxidative stress and apoptosis. A DOX-induced cardiotoxicity animal model was established in C57BL/6 mice by administering an intraperitoneal injection of DOX (20 mg/kg), and the control group was intraperitoneally injected with the same volume of sterilized saline. The effects were assessed after 7 d. Additionally, H9c2 cells were stimulated with DOX (10 μM) for 24 h. The results showed decreased ORM1 and increased oxidative stress and apoptosis after DOX stimulation in vivo and in vitro. ORM1 overexpression significantly reduced DOX-induced oxidative stress and apoptosis in H9c2 cells. ORM1 significantly increased the expression of nuclear factor-like 2 (Nrf2) and its downstream protein heme oxygenase 1 (HO-1) and reduced the expression of the lipid peroxidation end product 4-hydroxynonenal (4-HNE) and the level of cleaved caspase-3. In addition, Nrf2 silencing reversed the effects of ORM1 on DOX-induced oxidative stress and apoptosis in cardiomyocytes. In conclusion, ORM1 inhibited DOX-induced oxidative stress and apoptosis in cardiomyocytes by regulating the Nrf2/HO-1 pathway, which might provide a new treatment strategy for DOX-induced cardiotoxicity.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Vijayasree V. Giridharan ◽  
Allan Collodel ◽  
Jaqueline S. Generoso ◽  
Giselli Scaini ◽  
Rico Wassather ◽  
...  

Abstract Background Bacterial meningitis is a devastating central nervous system (CNS) infection with acute and long-term neurological consequences, including cognitive impairment. The aim of this study was to understand the association between activated microglia-induced neuroinflammation and post-meningitis cognitive impairment. Method Meningitis was induced in male Wistar rats by injecting Streptococcus pneumoniae into the brain through the cisterna magna, and rats were then treated with ceftriaxone. Twenty-four hours and 10 days after meningitis induction, rats were imaged with positron emission tomography (PET) using [11C]PBR28, a specific translocator protein (TSPO) radiotracer, to determine in vivo microglial activation. Following imaging, the expression of TSPO, cardiolipin, and cytochrome c, inflammatory mediators, oxidative stress markers, and glial activation markers were evaluated in the prefrontal cortex and hippocampus. Ten days after meningitis induction, animals were subjected to behavioral tests, such as the open-field, step-down inhibitory avoidance, and novel object recognition tests. Results Both 24-h (acute) and 10-day (long-term) groups of rats demonstrated increased [11C]PBR28 uptake and microglial activation in the whole brain compared to levels in the control group. Although free from infection, 10-day group rats exhibited increased expression levels of cytokines and markers of oxidative stress, microglial activation (IBA-1), and astrocyte activation (GFAP) similar to those seen in the 24-h group. Acute meningitis induction also elevated TSPO, cytochrome c, and caspase-3 levels with no change in caspase-9 levels. Furthermore, upregulated levels of TSPO, cytochrome c, and caspase-3 and caspase-9 were observed in the rat hippocampus 10 days after meningitis induction with a simultaneous reduction in cardiolipin levels. Animals showed a cognitive decline in all tasks compared with the control group, and this impairment may be at least partially mediated by activating a glia-mediated immune response and upregulating TSPO. Conclusions TSPO-PET could potentially be used as an imaging biomarker for microglial activation and long-term cognitive impairment post-meningitis. Additionally, this study opens a new avenue for the potential use of TSPO ligands after infection-induced neurological sequelae.


Sign in / Sign up

Export Citation Format

Share Document