unsupervised cluster analysis
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 30)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Isabelle Pehrson ◽  
Nina Idh ◽  
Clara Braian ◽  
Jakob Paues ◽  
Jyotirmoy Das ◽  
...  

Abstract The mechanism of protection of the only approved tuberculosis (TB) vaccine, Bacillus Calmette Guérin (BCG) is poorly understood. In recent years, epigenetic modifications induced by BCG have been demonstrated to reflect a state of trained immunity. The concept of trained immunity is now explored as a potential prevention strategy for a variety of infections. Studies on human TB immunity are dominated by those using peripheral blood as surrogate markers for immunity. Here, we instead studied the lung compartment by obtaining induced sputum from subjects included in a TB contact tracing. CD3- and HLA-DR-positive cells were isolated from the collected sputum and DNA methylome analyses performed. Unsupervised cluster analysis revealed that DNA methylomes of cells from TB-exposed individuals and controls appeared as separate clusters, and the numerous genes that were differentially methylated were functionally connected. The enriched pathways were strongly correlated to previously reported epigenetic changes and trained immunity in immune cells exposed to the BCG vaccine in human and animal studies. We further demonstrated that similar pathways were epigenetically modified in human macrophages trained with BCG in vitro. Altogether, our study demonstrates that similar epigenetic changes are induced by M. tuberculosis and BCG.


2021 ◽  
Author(s):  
Georg Hahn ◽  
Sanghun Lee ◽  
Dmitry Prokopenko ◽  
Tanya Novak ◽  
Julian Hecker ◽  
...  

The GISAID database contains more than 100,000 SARS-CoV-2 genomes, including sequences of the recently discovered SARS-CoV-2 omicron variant and of prior SARS-CoV-2 strains that have been collected from patients around the world since the beginning of the pandemic. We applied unsupervised cluster analysis to the SARS-CoV-2 genomes, assessing their similarity at a genome-wide level based on the Jaccard index and principal component analysis. Our analysis results show that the omicron variant sequences are most similar to sequences that have been submitted early in the pandemic around January 2020. Furthermore, the omicron variants in GISAID are spread across the entire range of the first principal component, suggesting that the strain has been in circulation for some time. This observation supports a long-term infection hypothesis as the omicron strain origin.


Author(s):  
Ze Gao ◽  
Junxiu Chen ◽  
Yiran Tao ◽  
Qiong Wang ◽  
Shirong Peng ◽  
...  

Immunotherapy is gradually emerging in the field of tumor treatment. However, because of the complexity of the tumor microenvironment (TME), some patients cannot benefit from immunotherapy. Therefore, we comprehensively analyzed the TME and gene mutations of ccRCC to identify a comprehensive index that could more accurately guide the immunotherapy of patients with ccRCC. We divided ccRCC patients into two groups based on immune infiltration activity. Next, we investigated the differentially expressed genes (DEGs) and constructed a prognostic immune score using univariate Cox regression analysis, unsupervised cluster analysis, and principal component analysis (PCA) and validated its predictive power in both internal and total sets. Subsequently, the gene mutations in the groups were investigated, and patients suitable for immunotherapy were selected in combination with the immune score. The prognosis of the immune score-low group was significantly worse than that of the immune score-high group. The patients with BRCA1-associated protein 1 (BAP1) mutation had a poor prognosis. Thus, this study indicated that establishing an immune score model combined with BAP1 mutation can better predict the prognosis of patients, screen suitable ccRCC patients for immunotherapy, and select more appropriate drug combinations.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1444
Author(s):  
Caterina Lonati ◽  
Andrea Schlegel ◽  
Michele Battistin ◽  
Riccardo Merighi ◽  
Margherita Carbonaro ◽  
...  

Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons’ subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes, metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular profiles were assessed by unsupervised cluster analysis. Differences between “machine perfusion (MP)-yes” vs. “MP-no”; “brain-death (DBD) vs. donation-after-circulatory-death (DCD)”; “early-allograft-dysfunction (EAD)-yes” vs. “EAD-no” groups, as well as correlation between effluent variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021). Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038), and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced (p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and LDH (p = 0.047) were higher in the “EAD-yes” compared to the “EAD-no” group. Cytolysis markers and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that effluent molecular analysis can provide directions about the use of HOPE.


2021 ◽  
Vol 21 (17) ◽  
pp. 13149-13166
Author(s):  
Chien Wang

Abstract. Severe haze or low-visibility events caused by abundant atmospheric aerosols have become a serious environmental issue in many countries. A framework based on deep convolutional neural networks containing more than 20 million parameters called HazeNet has been developed to forecast the occurrence of such events in two Asian megacities: Beijing and Shanghai. Trained using time-sequential regional maps of up to 16 meteorological and hydrological variables alongside surface visibility data over the past 41 years, the machine has achieved a good overall performance in identifying haze versus non-haze events, and thus their respective favorable meteorological and hydrological conditions, with a validation accuracy of 80 % in both the Beijing and Shanghai cases, exceeding the frequency of non-haze events or no-skill forecasting accuracy, and an F1 score specifically for haze events of nearly 0.5. Its performance is clearly better during months with high haze frequency, i.e., all months except dusty April and May in Beijing and from late autumn through all of winter in Shanghai. Certain valuable knowledge has also obtained from the training, such as the sensitivity of the machine's performance to the spatial scale of feature patterns, that could benefit future applications using meteorological and hydrological data. Furthermore, an unsupervised cluster analysis using features with a greatly reduced dimensionality produced by the trained HazeNet has, arguably for the first time, successfully categorized typical regional meteorological–hydrological regimes alongside local quantities associated with haze and non-haze events in the two targeted cities, providing substantial insights to advance our understandings of this environmental extreme. Interesting similarities in associated weather and hydrological regimes between haze and false alarm clusters or differences between haze and missing forecasting clusters have also been revealed, implying that factors, such as energy-consumption variation and long-range aerosol transport, could also influence the occurrence of hazes, even under unfavorable weather conditions.


2021 ◽  
Author(s):  
Wang-Ying Dai ◽  
Bin Wang ◽  
Jian-Yi Li ◽  
Jun-Cheng Zhu ◽  
Zong-ping Luo

Abstract Background: Soft tissue sarcoma is a malignant tumor with high degree of malignancy and poor prognosis, originating from mesenchymal tissue. Long non-coding RNAs (lncRNAs) are involved in various biological and pathological processes in the body. They target mRNA through transcription or post-transcription, resulting in the occurrence, invasion, and metastasis of tumors. Therefore, they are highly relevant with regard to early diagnoses and as prognostic indicators.Objective: The objective of the present study was to identify immune-related lncRNAs associated with the tumor microenvironment that can be used to predict soft tissue sarcomas.Methods: Clinical data and follow-up data were obtained from the cBioPortal database, and RNA sequencing data used for the model structure can be accessed from. The Cancer Genome Atlas (TCGA) database. LncRNAs were screened by differential expression analysis and co-expression analysis. The Cox regression model and Kaplan–Meier analysis were used to study the association between lncRNAs and soft tissue sarcoma prognosis in the immune microenvironment. Unsupervised cluster analysis was then completed to discover the impact of screening lncRNAs on disease. Lastly, we constructed an mRNA-lncRNA network by Cytoscape software.Results: Unsupervised cluster analysis revealed that the 210 lncRNAs screened showed strong correlation with the tumor immune microenvironment. Two signatures containing seven and five lncRNAs related to the tumor microenvironment were constructed and used to predict overall survival (OS) and disease-free survival (DFS). The Kaplan–Meier(K-M) survival curve showed that the prognoses of patients in the high-risk and low-risk groups differed significantly, and the prognosis associated with the low-risk group was better than that associated with the high-risk group. Two nomograms with predictive capabilities were established.Conclusion: The results indicate that seven OS- and five DFS-related lncRNAs are correlated with the prognosis of soft tissue sarcoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryad Tamouza ◽  
Urs Meyer ◽  
Marianne Foiselle ◽  
Jean-Romain Richard ◽  
Ching-lieng Lu ◽  
...  

AbstractHuman endogenous retroviruses (HERVs) are remnants of infections that took place several million years ago and represent around 8% of the human genome. Despite evidence implicating increased expression of HERV type W envelope (HERV-W ENV) in schizophrenia and bipolar disorder, it remains unknown whether such expression is associated with distinct clinical or biological characteristics and symptoms. Accordingly, we performed unsupervised two-step clustering of a multivariate data set that included HERV-W ENV protein antigenemia, serum cytokine levels, childhood trauma scores, and clinical data of cohorts of patients with schizophrenia (n = 29), bipolar disorder (n = 43) and healthy controls (n = 32). We found that subsets of patients with schizophrenia (~41%) and bipolar disorder (~28%) show positive antigenemia for HERV-W ENV protein, whereas the large majority (96%) of controls was found to be negative for ENV protein. Unsupervised cluster analysis identified the presence of two main clusters of patients, which were best predicted by the presence or absence of HERV-W ENV protein. HERV-W expression was associated with increased serum levels of inflammatory cytokines and higher childhood maltreatment scores. Furthermore, patients with schizophrenia who were positive for HERV-W ENV protein showed more manic symptoms and higher daily chlorpromazine (CPZ) equivalents, whereas HERV-W ENV positive patients with bipolar disorder were found to have an earlier disease onset than those who were negative for HERV-W ENV protein. Taken together, our study suggest that HERV-W ENV protein antigenemia and cytokines can be used to stratify patients with major mood and psychotic disorders into subgroups with differing inflammatory and clinical profiles.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xuan Liu ◽  
Chuan Liu ◽  
Jie Liu ◽  
Ying Song ◽  
Shanshan Wang ◽  
...  

BackgroundEndometrial cancer (EC) is one of the most common female malignant tumors. The immunity is believed to be associated with EC patients’ survival, and growing studies have shown that aberrant alternative splicing (AS) might contribute to the progression of cancers.MethodsWe downloaded the clinical information and mRNA expression profiles of 542 tumor tissues and 23 normal tissues from The Cancer Genome Atlas (TCGA) database. ESTIMATE algorithm was carried out on each EC sample, and the OS-related different expressed AS (DEAS) events were identified by comparing the high and low stromal/immune scores groups. Next, we constructed a risk score model to predict the prognosis of EC patients. Finally, we used unsupervised cluster analysis to compare the relationship between prognosis and tumor immune microenvironment.ResultsThe prognostic risk score model was constructed based on 16 OS-related DEAS events finally identified, and then we found that compared with high-risk group the OS in the low-risk group was notably better. Furthermore, according to the results of unsupervised cluster analysis, we found that the better the prognosis, the higher the patient’s ESTIMATE score and the higher the infiltration of immune cells.ConclusionsWe used bioinformatics to construct a gene signature to predict the prognosis of patients with EC. The gene signature was combined with tumor microenvironment (TME) and AS events, which allowed a deeper understanding of the immune status of EC patients, and also provided new insights for clinical patients with EC.


Sign in / Sign up

Export Citation Format

Share Document