scholarly journals Rapid sensitive bioscreening of remdesivir in COVID-19 medication: Selective drug determination in the presence of six co-administered therapeutics

2021 ◽  
Vol 40 (1) ◽  
pp. 323-333
Author(s):  
Mona M. Abdel Moneim ◽  
Miranda F. Kamal ◽  
Mohamed M. A. Hamdy

Abstract The widespread coronavirus 2019 (COVID-19) pandemic, attributed to the severe acute respiratory syndrome coronavirus-2, has resulted in global lockdowns and excess mortality. Remdesivir (RM) is the first and only antiviral drug that the US Food and Drug Administration (FDA) has approved so far for COVID-19. The treatment protocol involves multidrug combinations, basically depending on RM, in addition to antimicrobials, antipyretics, corticosteroids, and anticoagulants. This study develops and validates sensitive and selective RM screening in spiked human plasma in the presence of commonly co-administered drugs. Hydroxychloroquine, azithromycin, paracetamol, dexamethasone, and anticoagulants (rivaroxaban and edoxaban) have been detected simultaneously with RM in the same biological matrix. Separation has been efficiently achieved by simple reversed phase HPLC with dual detectors. Diode array detector and fluorimetric detection have been used to compare their sensitivity and selectivity. Both assays have been validated according to bioanalytical FDA validation parameters. Chromatographic separation and quantitation of RM along with concomitant drugs instantly bioscreen COVID-19 multiple therapy medication in 10 min run time. Furthermore, the proposed in vitro study takes the lead for prospective testing of possible drug–drug interactions that alter the pharmacokinetic profiles of drugs.

Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


Author(s):  
Kanan G Gamit ◽  
Niraj Y Vyas ◽  
Nishit D Patel ◽  
Manan A Raval

Objective: A study was aimed to estimate guggulsterone-Z (GZ) in Gokshuradi Guggulu (GG).Methods: An analytical method was developed and validated using Waters Alliance high-performance liquid chromatography system (Empower software), equipped with photodiode array detector. Separation was achieved using Phenomenex, C-18 (250 mm×4.6 mm, 5 μ) column. Mobile phase consisted of acetonitrile:water (70:30,v/v). Flow rate was set to 1 ml/min and detection was performed at 251 nm.Results and Discussion: Validation parameters such as linearity, precision, accuracy, limit of detection, limit of quantification, and robustness were performed. Amount of GZ was estimated using linearity equation.Conclusion: GG was found to contain 0.815±0.03 g% w/w GZ. Validated method may be used as one of the parameters to standardize the formulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Md. Saddam Nawaz

The purpose of this study was to develop and validate a new reversed phase high performance liquid chromatographic (RP-HPLC) method to quantifyin vitrodissolution assay of rabeprazole sodium in pharmaceutical tablet dosage form. Method development was performed on C 18,100×4.6 mm ID, and 10 μm particle size column, and injection volume was 20 μL using a diode array detector (DAD) to monitor the detection at 280 nm. The mobile phase consisted of buffer: acetonitrile at a ratio of 60 : 40 (v/v), and the flow rate was maintained at 1.0 mL/min. The method was validated in terms of suitability, linearity, specificity, accuracy, precision, stability, and sensitivity. Linearity was observed over the range of concentration 0.05–12.0 μg/mL, and the correlation coefficient was found excellent >0.999. The method was specific with respect to rabeprazole sodium, and the peak purity was found 99.99%. The method was precise and had relative standard deviations (RSD) less than 2%. Accuracy was found in the range of 99.9 to 101.9%. The method was robust in different variable conditions and reproducible. This proposed fast, reliable, cost-effective method can be used as quality control tool for the estimation of rabeprazole sodium in routine dissolution test analysis.


2007 ◽  
Vol 90 (6) ◽  
pp. 1566-1572 ◽  
Author(s):  
Paulo Renato Oliveira ◽  
Thiago Barth ◽  
Vitor Todeschini ◽  
Sérgio luiz Dalmora

Abstract A reversed-phase liquid chromatographic (LC) method was developed and validated for the simultaneous determination of ezetimibe and simvastatin in pharmaceutical dosage forms. The LC method was carried out on a Synergi fusion C18 column (150 mm 4.6 mm id) maintained at 45C. The mobile phase consisted of phosphate buffer 0.03 M, pH 4.5acetonitrile (35 + 65, v/v) run at a flow rate of 0.6 mL/min, and detection was made using a photodiode array detector at 234 nm. The chromatographic separation was obtained within 15.0 min, and calibration graphs were linear in the concentration range of 0.5200 g/mL. Validation parameters such as specificity, linearity, precision, accuracy, and robustness were evaluated, giving results within the acceptable range for both compounds. Moreover, the proposed method was successfully applied for the routine quality control analysis of pharmaceutical products.


2021 ◽  
Vol 9 ◽  
Author(s):  
Beatrice Campanella ◽  
Laura Colombaioni ◽  
Riccardo Nieri ◽  
Edoardo Benedetti ◽  
Massimo Onor ◽  
...  

Metabolomic profiling of cell lines has shown many potential applications and advantages compared to animal models and human subjects, and an accurate cellular metabolite analysis is critical to understanding both the intracellular and extracellular environments in cell culture. This study provides a fast protocol to investigate in vitro metabolites of immortalized hippocampal neurons HN9.10e with minimal perturbation of the cell system using a targeted approach. HN9.10e neurons represent a reliable model of one of the most vulnerable regions of the central nervous system. Here, the assessment of their extracellular metabolic profile was performed by studying the cell culture medium before and after cell growth under standard conditions. The targeted analysis was performed by a direct, easy, high-throughput reversed-phase liquid chromatography with diode array detector (RP-HPLC-DAD) method and by headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS) for the study of volatile organic compounds (VOCs). The analysis of six different batches of cells has allowed to investigate the metabolic reproducibility of neuronal cells and to describe the metabolic “starting” conditions that are mandatory for a well-grounded interpretation of the results of any following cellular treatment. An accurate study of the metabolic profile of the HN9.10e cell line has never been performed before, and it could represent a quality parameter before any other targeting assay or further exploration.


2018 ◽  
Vol 9 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Maha Osama El-Kayal ◽  
Maha Nasr Sayed ◽  
Nahed Dawood Mortada ◽  
Seham Elkheshen

(-)-Epigallocatechin gallate (EGCG) is a catechin found in green tea that has potential health benefits, such as anti-oxidant, anti-carcinogenic and anti-inflammatory effects. A rapid and sensitive Ultra-Performance Liquid Chromatographic (UPLC) method was developed and validated for the estimation of (-)-epigallocatechin-3-gallate in lipid-based formulation. The UPLC method was conducted on C18 analytical column (50 mm × 2.1 mm, 1.8 μm particle size). The mobile phase consisted of a mixture of acetic acid (1%, v:v; pH = 3), acetonitrile and water at volume ratio of 13:15:72 delivered at a flow rate of 0.5 mL/min. The diode array detector (DAD) acquisition wavelength was set at wavelengths 210 and 280 nm. Caffeine was used as internal standard. The tested validation parameters, i.e., selectivity, linearity, accuracy, precision, and sensitivity (Limit of detection and limit of quantification) were determined at both wavelengths. Results revealed that caffeine and EGCG peaks were eluted at retention times of 0.55 and 0.85 minutes, respectively. The calibration curve was linear over the concentration range of 10-60 μg/mL, with coefficients of determination (r2) of 0.9993 and 0.9998 nm at 210 and 280 nm, respectively. All the validation parameters were found within the acceptable range. The proposed method was successfully applied for the quantitation of EGCG in lipid-based formulation and statistical analysis with a reported method showed no significant difference at p < 0.05. Therefore, the proposed analytical method for EGCG can be considered as a rapid, selective and accurate analytical method that can be used for the quantitative analysis of EGCG.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


Sign in / Sign up

Export Citation Format

Share Document