Progressive Physics Journal
Latest Publications


TOTAL DOCUMENTS

9
(FIVE YEARS 5)

H-INDEX

0
(FIVE YEARS 0)

Published By Universitas Mulawarman

2722-7707

2021 ◽  
Vol 2 (1) ◽  
pp. 37
Author(s):  
Azizah Bella Azizah Bella ◽  
Devina Rayzy Perwitasari Sutaji Putri ◽  
Idris Mandang

Knowing the condition of the waters is very important for the sustainability of aquatic ecosystems. The condition of the waters so as not to have a bad impact on aquatic ecosystems can be known through temperature and salinity parameters. Seawater temperature is the distribution of heat in the ocean caused by the movement of water and other factors. The salinity of seawater is the level of saltiness or the level of salt dissolved in seawater. Temperature can be measured using a thermometer and salinity is measured using a refractometer. However, using these tools requires time, effort, cost, and manual data retrieval processes. Therefore, this research aims to make a temperature and salinity measuring instrument and determine the relationship between Voltage and salinity in the seawater. This research used the method of measuring electrical conductivity (DHL) to determine a change in magnitude. The temperature and salinity design consisted of an Arduino Uno, a YL-38 Module, and copper as an electrode, and a DS18B20 Temperature Sensor. the result of this research shows that has been done, the average error presentation of salinity is 0.00732% and temperature is 0.044 %. Through this research, salinity and the temperature instrument produced using electrodes made of copper and DS18B20 which operate at a Voltage of 4,8 Volts. The obtained a linear graph between stress and salinity. The relationship between voltage and salinity is directly proportional, the higher the salinity of seawater, the greater the output voltage.



2021 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Siti Istikhomah ◽  
Syahrir Syahrir ◽  
Adrianus Inu Natalisanto

Noise is a sound that humans do not want and it is an environmental factor that can negatively affect health. To overcome the noise issue, many efforts have been made to reduce noise levels. An example is the manufacture of the walls of a house using materials with sound and absorbent standards. The materials used can also be derived from types of wood such as plywood, wood panels and calciboards. Therefore, the value of its sound absorption coefficient is calculated to find out which active material is to be used in the manufacture of the building. Based on the research results, the value of the sound absorption coefficient of the three types of materials, it can be seen that the shape of the graph and its analysis states that the lowest sound absorption coefficient is most likely at the lower frequencies and the highest value of the sound absorption coefficient tends to be at the higher frequencies. In fact, when viewed as a whole, the magnitude and magnitude of the sound absorption coefficient on the graph is not in line with the increase in the frequency value.



2021 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
M. Wafieq Akbar Al Asyrafi ◽  
Adrianus Inu Natalisanto ◽  
Rahmat Gunawan

Rochelle Salt is the first synthesis Crystal made by Pierre Siegnette La Rocchelle in France. Rochelle Salt have several characteriztion one of them is piezoelectric effect where the crystal can change the kinetic energy to electrical energy instead this is the one of rewenable source altenative energy. Rochelle Salt can be made with tartar cream and washing soda reacted with distilled water as a solvent. The solution is reacted until there is no more reaction or supersaturation condition. Wait the solution for 2 days until the crystal seed  appears. The crystal growth using the method of growing crystal in solution for 1 month until the crystal bigger enough for research to find the piezoelectric effect. Based on the result that have been obtained, Rochelle Salt have piezoelectric effect. Crystal hit using with wooden hitter and metal hitter, the voltage is increase when the crystal is hit by hitter. The piezoelectric also disappear along with time.



2021 ◽  
Vol 2 (1) ◽  
pp. 29
Author(s):  
Putri Islam Nur Hikmah ◽  
Mislan Mislan ◽  
Rahmiati Munir

Information of temperature and humidity in planting media is very important for cultivation activities and  the process of plant growth, where the real time process is very useful to determine the watering process on planting media. The purpose of the research that has been done was to design a monitoring system for soil temperature and humidity on the planting media and to make an automatic plant watering sprinkler by detecting soil moisture. A design for monitoring soil temperature and humidity on planting media has been made with a microcontroller. This instrument works when the pump detects soil with a range ​​from 0-3 cm/Hg for dry, 3.1-6 cm/Hg for moist and 6-7.9 cm/Hg for wet. When the soil is dry, the pump will work by removing water and stop when the soil is damp or wet.



2021 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Muliana Dai ◽  
Kadek Subagiada ◽  
Adrianus Inu Natalisanto

The aim of this study is to measure the UV intensity received by the welders during working time and compare the results of measured radiation intensity which is obtained with the NAB in Regulation of the Minister of Manpower No. 05 of 2018 that is 0,0008 mW/cm2. The reason for using this NAB is for compare value while welding process with the value were allowed from Regulation of the Minister of Manpower. This study has been done in some workshops using the UV Meter and focused on the welders’ eye, elbow and calf area with 10 repetitions in each area. The results for eye area were 0.0749 mW/cm2, for elbow area were 0.0843 mW/cm2and for calf area were 0.0934 mW/cm2and all the results obtained exceed the NAB. The high value is caused by the environmental conditions is open and also affected by indeterminate sunlight, the risks received the welders in watery eye and headache because of the welder are disobey in using PPE while welding process.



2020 ◽  
Vol 1 (1) ◽  
pp. 20
Author(s):  
Tiara Nur Hikmaulida ◽  
Memi Nor Hayati ◽  
Sri Wahyuningsih

The statistical method used to analyze spatial data and spatial statistics. The case study in this study is the average number of hotspots in East Kalimantan by Regency / City in 2016-2018. This study aims to analyze the presence or absence of spatial autocorrelation in the data on the number of hotspots, determine the distribution pattern of hotspots, as well as determine the level of vulnerability of potential areas for forest and land fires in East Kalimantan by Regency / City in 2016-2018.  The method used to analyze spatial autocorrelation globally and determine the distribution patterns is the Moran Index. Local Indicator of Spatial Autocorrelation (LISA) to analyze spatial autocorrelation locally. Spatial autocorrelation analysis results globally using the Moran Index with α = 25% shows that there is a spatial autocorrelation in the average number of hotspots in East Kalimantan in 2016-2018. The distribution pattern of hotspots in East Kalimantan is the pattern of spread which shows that in 2016-2018 the hotspots spread in each district / city of East Kalimantan. Meanwhile, the results of the local analysis using LISA showed that there were spatial autocorrelations in several districts / cities in East Kalimantan. The method used to determine the level of vulnerability of potential forest and land fires is Flexibly Shaped Spatial Scan Statistics and LISA. The results showed that the regencies / cities included in the category of forest and land fire hazard were Samarinda City, Bontang City, Kutai Kartanegara District and East Kutai.



2020 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Happy Nugroho ◽  
Edhi Sarwono ◽  
Aditya Rinaldi

Gas classification techniques are often found in several applied fields such as, detection of leak gas in gas cylinders, monitoring the threshold of harmful pollutant gases in the air, health diagnostics, early detection of fire hazards, and others. This requires measurement techniques that are adaptive and robust that can dynamically capture information on changes in vapor or gas compounds contained in free air. This research has been conducted to analyze and identify the types of gas compounds, namely CO and petrodiesel fuel vapor (C14H30). The design of this tool uses the principle of spectrophotometry and the calculation of Backprogation Neural Networks. The working principle is that light radiation in the Light Emitting Diode (LED) series, which has a wavelength range of 385nm to 1720nm, is absorbed to penetrate CO gas or petrodiesel fuel vapor (C14H30) that you want to identify. Light radiation that has passed through the gas / vapor compound was captured by the photodiode sensor. The emission of LED series light radiation produces different wavelength absorption patterns that will be processed by the Backprogation Neural network as an input signal in the identification and learning process. The results of this experiment show the success rate of the Backpropagation neural network in identifying the type of CO gas and petrodiesel fuel vapor (C14H30) is 80%.  



2020 ◽  
Vol 1 (1) ◽  
pp. 29
Author(s):  
Mamba'ul Fitriyana ◽  
Suhadi Muliyono ◽  
Kadek Subagiada

The research on the determining machine factor (k) of Shimadzu digital radiograph X-ray machine have been done at the RSUD Dr. Kanujoso Djatiwibowo Balikpapan. Machine factor should be required in the calculation of radiation exposure which produced by the X-ray machine. Measurement data that have been used as independent variables were current-time, focus distance to the detector and tube voltage variations of 80 kV to 100 kV, while the dependent variable was the S value. Determination of the k value was conducted by weighted linear regression between V2 and  using the results of research by Seibert and Morin (2011) for the condition of calibrated X-ray machine. Thus, the reseach has  obtained the machine factor of the Shimadzu digital radiograph X-ray machine at the RSUD Dr. Kanujoso Djatiwibowo Balikpapan.



2020 ◽  
Vol 1 (1) ◽  
pp. 15
Author(s):  
Gede Wiratma Jaya ◽  
Heri Sutanto ◽  
Eko Hidayanto ◽  
Galih Puspa Saraswati

Radiotherapy is a method of externally cancer therapy using a Linear Accelerator (LINAC) tool. LINAC can produce photon and electron beam energy which will be used to treat cancer according to the position of the cancer in the patient's body. When using an electron beam to treat cancer on the surface of the skin, it is found that there is a lack of a radiation dose. The use of bolus with Silicone Rubber (SR) material is a solution to provide an increase in radiation doses in the surface area of the skin. In this study SR boluses were made using the sol-gel method with dimensions of 17 cm x 17 cm x 1 cm. The SR Bolus was illuminated with an applicator field area of 10 cm x 10 cm and energy variations of 5 MeV and 7 MeV. The surface dose produced at the moment without using a bolus for 5 MeV and 7 MeV energy is 1.60 Gy and 1.61 Gy. When using bolus, the surface dose of 5 MeV and 7 MeV energy is 2.12 Gy and 2.06 Gy. From the results of this study it can be concluded that the use of SR bolus can increase a higher surface dose without using bolus.



Sign in / Sign up

Export Citation Format

Share Document