scholarly journals Extensive loss of Wnt genes in Tardigrada

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Raul A. Chavarria ◽  
Mandy Game ◽  
Briana Arbelaez ◽  
Chloe Ramnarine ◽  
Zachary K. Snow ◽  
...  

Abstract Background Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan. Results We analyzed published genomes for two representatives of Tardigrada, Hypsibius exemplaris and Ramazzottius varieornatus. We identified single orthologs of Wnt4, Wnt5, Wnt9, Wnt11, and WntA, as well as two Wnt16 paralogs in both tardigrade genomes. We only found a Wnt2 ortholog in H. exemplaris. We could not identify orthologs of Wnt1, Wnt6, Wnt7, Wnt8, or Wnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog of arrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog of arrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes in H. exemplaris during developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes in H. exemplaris besides one of the Wnt16 paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs in H. exemplaris, rather than in broadly overlapping patterns. Conclusions Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lost Wnt1, Wnt6, Wnt7, Wnt8, and Wnt10, along with arrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage.

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 904 ◽  
Author(s):  
Sara El-Sahli ◽  
Ying Xie ◽  
Lisheng Wang ◽  
Sheng Liu

The Wingless (Wnt)/β-catenin pathway has long been associated with tumorigenesis, tumor plasticity, and tumor-initiating cells called cancer stem cells (CSCs). Wnt signaling has recently been implicated in the metabolic reprogramming of cancer cells. Aberrant Wnt signaling is considered to be a driver of metabolic alterations of glycolysis, glutaminolysis, and lipogenesis, processes essential to the survival of bulk and CSC populations. Over the past decade, the Wnt pathway has also been shown to regulate the tumor microenvironment (TME) and anti-cancer immunity. Wnt ligands released by tumor cells in the TME facilitate the immune evasion of cancer cells and hamper immunotherapy. In this review, we illustrate the role of the canonical Wnt/β-catenin pathway in cancer metabolism and immunity to explore the potential therapeutic approach of targeting Wnt signaling from a metabolic and immunological perspective.


2006 ◽  
Vol 189 (5) ◽  
pp. 1974-1982 ◽  
Author(s):  
Corinne L. Williams ◽  
Peggy A. Cotter

ABSTRACT The Bordetella BvgAS virulence control system is prototypical of phosphorelays that use a polydomain sensor and a response regulator to control gene expression in response to environmental cues. BvgAS controls the expression of at least three distinct phenotypic phases (Bvg−, Bvgi, and Bvg+) by differentially regulating the expression of at least four classes of genes. Among the loci regulated by BvgAS is bvgAS itself. We investigated the role of autoregulation in the ability of BvgAS to control multiple gene expression patterns in a temporal and steady-state manner by constructing Bordetella bronchiseptica strains in which the bvgAS promoter was replaced with constitutively active promoters. Our results show that positive autoregulation of bvgAS transcription is required for the temporal expression of multiple phenotypic phases that occurs in response to a shift from Bvg−-phase conditions to Bvg+-phase conditions. Autoregulation was also shown to contribute to steady-state regulation; it influences the sensitivity of the system in response to subtle differences in signal intensity. In addition, considered in relation to BvgA and BvgS activities demonstrated in vitro, our results provide insight into how BvgA and BvgS function mechanistically.


2021 ◽  
Author(s):  
Beata Zagórska-Marek

Functioning in the Earth gravity field imposes on living organisms a necessity to read directions. The characteristic feature of their bodies, regardless unicellular or multicellular, is axial symmetry. The development of body plan orchestrated by spatiotemporal changes in gene expression patterns is based on formation of the vertical and radial axes. Especially for immobile plants, anchored to the substrate, vertical axis is primary and most important. But also in animals the primary is the axis, which defines the anterior and posterior pole of the embryo. There are many little known chiral processes and structures that are left- or right oriented with respect to this axis. Recent developments indicate the role of intrinsic cell chirality that determines the direction of developmental chiral processes in living organisms. The still enigmatic events in cambia of trees and handedness of phyllotaxis as well as plant living crystals are in focus of the chapter.


Author(s):  
Sifang Liao ◽  
Dick R. Nässel

AbstractIn Drosophila eight insulin-like peptides (DILP1-8) are encoded on separate genes. These DILPs are characterized by unique spatial and temporal expression patterns during the lifecycle. Whereas functions of several of the DILPs have been extensively investigated at different developmental stages, the role of DILP8 signaling is primarily known from larvae and pupae where it couples organ growth and developmental transitions. In adult female flies, a study showed that a specific set of neurons that express the DILP8 receptor, Lgr3, is involved in regulation of reproductive behavior. Here, we further investigated the expression of dilp8/DILP8 and Lgr3 in adult female flies and the functional role of DILP8 signaling. The only site where we found both dilp8 expression and DILP8 immunolabeling was in follicle cells of mature ovaries. Lgr3 expression was detected in numerous neurons in the brain and ventral nerve cord, a small set of peripheral neurons innervating the abdominal heart, as well as in a set of follicle cells close to the oviduct. Ovulation was affected in dilp8 mutants as well as after dilp8-RNAi using dilp8 and follicle cell Gal4 drivers. More eggs were retained in the ovaries and fewer were laid, indicating that DILP8 is important for ovulation. Our data suggest that DILP8 signals locally to Lgr3 expressing follicle cells as well as systemically to Lgr3 expressing efferent neurons in abdominal ganglia that innervate oviduct muscle. Thus, DILP8 may act at two targets to regulate ovulation: follicle cell rupture and oviduct contractions. Furthermore, we could show that manipulations of dilp8 expression affect food intake and starvation resistance. Possibly this reflects a feedback signaling between ovaries and the CNS that ensures nutrients for ovary development. In summary, it seems that DILP8 signaling in regulation of reproduction is an ancient function, conserved in relaxin signaling in mammals.


Author(s):  
Abi S Ghifari ◽  
Pedro F Teixeira ◽  
Beata Kmiec ◽  
Neha Singh ◽  
Elzbieta Glaser ◽  
...  

Abstract Plant endosymbiotic organelles such as mitochondria and chloroplasts harbour a wide array of biochemical reactions. As a part of protein homeostasis to maintain organellar activity and stability, unwanted proteins and peptides need to be completely degraded in a stepwise mechanism termed the processing pathway, where at the last stage single amino acids are released by aminopeptidases. Here, we determined the molecular and physiological functions of a prolyl aminopeptidase homologue PAP1 (At2g14260) that is able to release N-terminal proline. Transcript analyses demonstrate that an alternative transcription start site (TSS) gives rise to two alternate transcripts, generating two in-frame proteins PAP1.1 and PAP1.2. Sub-cellular localisation studies revealed that the longer isoform PAP1.1, which contains a 51-residue N-terminal extension is exclusively targeted to chloroplasts, while the truncated isoform PAP1.2 is located in the cytosol. Distinct expression patterns in different tissues and developmental stages were observed. Investigations into the physiological role of PAP1 using loss-of-function mutants revealed that PAP1 activity may be involved in proline homeostasis and accumulation, required for pollen development and tolerance to osmotic stress. Enzymatic activity, sub-cellular location, and expression patterns of PAP1 suggest a role in the chloroplastic peptide processing pathway and proline homeostasis.


2008 ◽  
Vol 19 (6) ◽  
pp. 2588-2596 ◽  
Author(s):  
Kyung-Ah Kim ◽  
Marie Wagle ◽  
Karolyn Tran ◽  
Xiaoming Zhan ◽  
Melissa A. Dixon ◽  
...  

The R-Spondin (RSpo) family of secreted proteins is implicated in the activation of the Wnt signaling pathway. Despite the high structural homology between the four members, expression patterns and phenotypes in knockout mice have demonstrated striking differences. Here we dissected and compared the molecular and cellular function of all RSpo family members. Although all four RSpo proteins activate the canonical Wnt pathway, RSpo2 and 3 are more potent than RSpo1, whereas RSpo4 is relatively inactive. All RSpo members require Wnt ligands and LRP6 for activity and amplify signaling of Wnt3A, Wnt1, and Wnt7A, suggesting that RSpo proteins are general regulators of canonical Wnt signaling. Like RSpo1, RSpo2-4 antagonize DKK1 activity by interfering with DKK1 mediated LRP6 and Kremen association. Analysis of RSpo deletion mutants indicates that the cysteine-rich furin domains are sufficient and essential for the amplification of Wnt signaling and inhibition of DKK1, suggesting that Wnt amplification by RSpo proteins may be a direct consequence of DKK1 inhibition. Together, these findings indicate that RSpo proteins modulate the Wnt pathway by a common mechanism and suggest that coexpression with specific Wnt ligands and DKK1 may determine their biological specificity in vivo.


2003 ◽  
Vol 71 (6) ◽  
pp. 3043-3052 ◽  
Author(s):  
Bryna Fuchslocher ◽  
Laura L. Millar ◽  
Peggy A. Cotter

ABSTRACT The Bordetella BvgAS signal transduction system controls the expression of at least three phenotypic phases, the Bvg+ or virulent phase, the Bvg− or avirulent phase, and the Bvgi or Bvg intermediate phase, which has been hypothesized to be important for transmission. bipA, the first identified Bvgi-phase gene, encodes a protein with similarity to the well-characterized bacterial adhesins intimin and invasin. Proteins encoded by the bipA genes present in Bordetella pertussis Tohama I and Bordetella bronchiseptica RB50 differ in the number of 90-amino-acid repeats which they possess and in the sequence of the C-terminal domain. To investigate the possibility that bipA alleles segregate according to host specificity and to gain insight into the role of BipA and the Bvgi phase in the Bordetella infectious cycle, we compared bipA alleles across members of the B. bronchiseptica cluster, which includes both human-infective (B. pertussis and B. parapertussis hu) and non-human-infective (B. bronchiseptica and B. parapertussis ov) strains. bipA genes were present in most, but not all, strains. All bipA genes present in B. bronchiseptica strains were identical to bipA of RB50 (at least with regard to the DNA sequence of the 3′ C-terminal-domain-encoding region, the number of 90-amino-acid repeats encoded, and expression patterns). Although all bipA genes present in the other Bordetella strains were identical in the 3′ C-terminal-domain-encoding region to bipA of B. pertussis Tohama I, they varied in the number of 90-amino-acid repeats that they encoded and in expression level. Notably, the genes present in B. parapertussis hu strains were pseudogenes, and the genes present in B. parapertussis ov strains were expressed at significantly reduced levels compared with the levels in B. pertussis and B. bronchiseptica strains. Our results indicate that there is a correlation between specific bipA alleles and specific hosts. They also support the hypothesis that both horizontal gene transfer and fine-tuning of gene expression patterns contribute to the evolution of host adaptation in lineages of the B. bronchiseptica cluster.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Antara Das ◽  
Deepti Nigam ◽  
Alim Junaid ◽  
Kishor U. Tribhuvan ◽  
Kuldeep Kumar ◽  
...  

AbstractNon-coding RNA’s like miRNA, lncRNA, have gained immense importance as a significant regulatory factor in different physiological and developmental processes in plants. In an effort to understand the molecular role of these regulatory agents, in the present study, 3019 lncRNAs and 227 miRNAs were identified from different seed and pod developmental stages in Pigeonpea, a major grain legume of Southeast Asia and Africa. Target analysis revealed that 3768 mRNAs, including 83 TFs were targeted by lncRNAs; whereas 3060 mRNA, including 154 TFs, were targeted by miRNAs. The targeted transcription factors majorly belong to WRKY, MYB, bHLH, etc. families; whereas the targeted genes were associated with the embryo, seed, and flower development. Total 302 lncRNAs interact with miRNAs and formed endogenous target mimics (eTMs) which leads to sequestering of the miRNAs present in the cell. Expression analysis showed that notably, Cc_lncRNA-2830 expression is up-regulated and sequestrates miR160h in pod leading to higher expression of the miR160h target gene, Auxin responsive factor-18. A similar pattern was observed for SPIKE, Auxin signaling F-box-2, Bidirectional sugar transporter, and Starch synthetase-2 eTMs. All the identified target mRNAs code for transcription factor and genes are involved in the processes like cell division, plant growth and development, starch synthesis, sugar transportation and accumulation of storage proteins which are essential for seed and pod development. On a combinatorial basis, our study provides a lncRNA and miRNA based regulatory insight into the genes governing seed and pod development in Pigeonpea.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 190 ◽  
Author(s):  
Caibi Zhou ◽  
Xin Mei ◽  
Dylan O’Neill Rothenberg ◽  
Zaibo Yang ◽  
Wenting Zhang ◽  
...  

A variant of tea tree (Camellia sinensis (L.)) with purple buds and leaves and pink flowers can be used as a unique ornamental plant. However, the mechanism of flower coloration remains unclear. To elucidate the molecular mechanism of coloration, as well as anthocyanin accumulation in white and pink tea flowers, metabolite profiling and transcriptome sequencing was analyzed in various tea flower developmental stages. Results of metabolomics analysis revealed that three specific anthocyanin substances could be identified, i.e., cyanidin O-syringic acid, petunidin 3-O-glucoside, and pelargonidin 3-O-β-d-glucoside, which only accumulated in pink tea flowers, and were not able to be detected in white flowers. RNA-seq and weighted gene co-expression network analysis revealed eight highly expressed structural genes involved in anthocyanin biosynthetic pathway, and particularly, different expression patterns of flavonol synthase and dihydroflavonol-4-reductase genes were observed. We deduced that the disequilibrium of expression levels in flavonol synthases and dihydroflavonol-4-reductases resulted in different levels of anthocyanin accumulation and coloration in white and pink tea flowers. Results of qRT-PCR performed for 9 key genes suggested that the expression profiles of differentially expressed genes were generally consistent with the results of high-throughput sequencing. These findings provide insight into anthocyanin accumulation and coloration mechanisms during tea flower development, which will contribute to the breeding of pink-flowered and anthocyanin-rich tea cultivars.


2021 ◽  
Vol 22 (19) ◽  
pp. 10840
Author(s):  
Jasna Lojk ◽  
Janja Marc

The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document