Studies on Hemoglobin II. Effect of Anti-Hemoglobin Sera on Red Blood Cells in Vitro and in Vivo

JAMA ◽  
1963 ◽  
Vol 186 (9) ◽  
pp. 132
Keyword(s):  
Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


2021 ◽  
Author(s):  
Andrew D. Beale ◽  
Priya Crosby ◽  
Utham K. Valekunja ◽  
Rachel S. Edgar ◽  
Johanna E. Chesham ◽  
...  

AbstractCellular circadian rhythms confer daily temporal organisation upon behaviour and physiology that is fundamental to human health and disease. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body. Being naturally anucleate, RBC circadian rhythms share key elements of post-translational, but not transcriptional, regulation with other cell types. The physiological function and developmental regulation of RBC circadian rhythms is poorly understood, however, partly due to the small number of appropriate techniques available. Here, we extend the RBC circadian toolkit with a novel biochemical assay for haemoglobin oxidation status, termed “Bloody Blotting”. Our approach relies on a redox-sensitive covalent haem-haemoglobin linkage that forms during cell lysis. Formation of this linkage exhibits daily rhythms in vitro, which are unaffected by mutations that affect the timing of circadian rhythms in nucleated cells. In vivo, haemoglobin oxidation rhythms demonstrate daily variation in the oxygen-carrying and nitrite reductase capacity of the blood, and are seen in human subjects under controlled laboratory conditions as well as in freely-behaving humans. These results extend our molecular understanding of RBC circadian rhythms and suggest they serve an important physiological role in gas transport.


2017 ◽  
Vol 117 (07) ◽  
pp. 1402-1411 ◽  
Author(s):  
Laura Beth Mann Dosier ◽  
Vikram J. Premkumar ◽  
Hongmei Zhu ◽  
Izzet Akosman ◽  
Michael F. Wempe ◽  
...  

SummaryThe system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.


2010 ◽  
Vol 53 (3) ◽  
pp. 575-582 ◽  
Author(s):  
Jacques Natan Grinapel Frydman ◽  
Adenilson de Souza da Fonseca ◽  
Vanessa Câmara da Rocha ◽  
Monica Oliveira Benarroz ◽  
Gabrielle de Souza Rocha ◽  
...  

This work evaluated the effect of in vitro and in vivo treatment with ASA on the morphology of the red blood cells. Blood samples or Wistar rats were treated with ASA for one hour. Blood samples or animals treated with saline were used as control group. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of red blood cells were evaluated under optical microscopy. Data showed that the in vitro treatment for one hour with ASA at higher dose used significantly (p<0.05) modified the perimeter/area ratio of the red blood cells. No morphological alterations were obtained with the in vivo treatment. ASA use at highest doses could interfere on shape of red blood cells.


1971 ◽  
Vol 118 (545) ◽  
pp. 465-466 ◽  
Author(s):  
Ngo Tran ◽  
Marcel Laplante ◽  
Etienne Lebel

The decarboxylation of 3, 4-dihydroxyphenyl-alanine (Dopa) to dopamine has been shown previously in animal and human tissues in both in vitro and in vivo studies (Sourkes, 1966; Vogel et al., 1970). However, very little information is available as to whether or not the decarboxylation of Dopa occurs in human red blood cells (RBC). In the present experiment we demonstrated this change in RBC from normals and from schizophrenics. An ionization chamber method was used for an instantaneous and continuous measurement of 14CO2 production from DL-dopa-carboxyl-14C by RBC in vitro.


2021 ◽  
Author(s):  
Choukri Mamoun ◽  
Anasuya C. Pal ◽  
Isaline Renard ◽  
Pallavi Singh ◽  
Pratap Vydyam ◽  
...  

Hematozoa are a subclass of protozoan parasites that invade and develop within vertebrate red blood cells to cause the pathological symptoms associated with diseases of both medical and veterinary importance such as malaria and babesiosis. A major limitation in the study of the most prominent hematozoa, Plasmodium spp, the causative agents of malaria, is the lack of a broadly accessible mouse model to evaluate parasite infection in vivo as is the case for P. falciparum or altogether the lack of an in vitro culture and mouse models as is the case for P. vivax, P. malariae and P. ovale. Similarly, no in vitro culture system exists for Babesia microti, the predominant agent of human babesiosis. In this study, we show that human red blood cells infected with the human pathogen Babesia duncani continuously propagated in culture, as well as merozoites purified from parasite cultures, can cause lethal infection in immunocompetent C3H/HeJ mice. Furthermore, highly reproducible parasitemia and survival outcomes were established using specific parasite loads and different mouse genetic backgrounds. Using the combined in culturein mouse (ICIM) model of B. duncani infection, we demonstrate that current recommended combination therapies for the treatment of human babesiosis, while synergistic in cell culture, have weak potency in vitro and failed to clear infection or prevent death in mice. Interestingly, using the ICIM model, we identified two new endochin-like quinolone prodrugs, ELQ-331 and ELQ468, that alone or in combination with atovaquone are highly efficacious against B. duncani and B. microti. The novelty, ease of use and scalability of the B. duncani ICIM dual model make it an ideal system to study intraerythrocytic parasitism by protozoa, unravel the molecular mechanisms underlying parasite virulence and pathogenesis, and accelerate the development of innovative therapeutic strategies that could be translated to unculturable parasites and important pathogens for which an animal model is lacking.


1991 ◽  
Vol 157 (1) ◽  
pp. 349-366 ◽  
Author(s):  
C. M. Wood ◽  
S. F. Perry

A new in vitro assay was developed and critically characterized to measure the rate of CO2 excretion by trout red blood cells (RBCs) from HCO3- in their natural plasma under normal in vivo conditions of acid-base status. The assay is based on the addition of [14C]bicarbonate to the whole blood and collection of the resultant 14CO2 in the overlying gas phase. The assay simulates the exposure of blood passing through the gills, and measured CO2 excretion rates are representative of those occurring in vivo. Rates are linear over the 3 min time course of the assay, related to haematocrit in a non-linear fashion, elevated by the addition of carbonic anhydrase, reduced by blockade with acetazolamide, and sensitive to variations of equilibration PCO2. Large variations in plasma [HCO3-] have only a small effect on CO2 excretion rates when the blood is chronically equilibrated at these levels. Acute elevations in [HCO3-], however, create a non-equilibrium situation, resulting in large increases in CO2 excretion. When the blood is acidified, to duplicate typical post-exercise metabolic acidosis, adrenaline causes a marked inhibition of RBC CO2 excretion. The response is transient, reaching a peak 5–8 min after addition of adrenaline and disappearing by 30–60 min. The magnitude of the adrenergic inhibition is correlated with the magnitude of the RBC pHi regulatory response, expressed as the RBC transmembrane pH difference (pHe-pHi). These results support the ‘CO2 retention theory’ explaining observed increases in blood PCO2 in vivo after exhaustive exercise and catecholamine infusions in fish.


2018 ◽  
Author(s):  
Ronan Duchesne ◽  
Anissa Guillemin ◽  
Fabien Crauste ◽  
Olivier Gandrillon

AbstractThe in vivo erythropoiesis, which is the generation of mature red blood cells in the bone marrow of whole organisms, has been described by a variety of mathematical models in the past decades. However, the in vitro erythropoiesis, which produces red blood cells in cultures, has received much less attention from the modelling community. In this paper, we propose the first mathematical model of in vitro erythropoiesis. We start by formulating different models and select the best one at fitting experimental data of in vitro erythropoietic differentiation. It is based on a set of linear ODE, describing 3 hypothetical populations of cells at different stages of differentiation. We then compute confidence intervals for all of its parameters estimates, and conclude that our model is fully identifiable. Finally, we use this model to compute the effect of a chemical drug called Rapamycin, which affects all states of differentiation in the culture, and relate these effects to specific parameter variations. We provide the first model for the kinetics of in vitro cellular differentiation which is proven to be identifiable. It will serve as a basis for a model which will better account for the variability which is inherent to experimental protocol used for the model calibration.


Blood ◽  
1965 ◽  
Vol 25 (6) ◽  
pp. 885-896 ◽  
Author(s):  
RICHARD A. RIFKIND ◽  
DAVID DANON

Abstract The ultrastructural changes in red blood cells exposed to phenylhydrazine, either in vivo or in vitro, are described. There is an age-dependent gradient of red cell sensitivity to this drug which includes the more mature reticulocytes as well as the population of circulating erythrocytes. Oxidative denaturation of hemoglobin and the formation of Heinz bodies, which constitute the major drug-induced lesion, are accompanied by a regular sequence of structural changes commencing in the central cytoplasm of erythrocytes and the drug-sensitive reticulocytes. These early changes often appear in close associaion with clusters of mitochondria. The initial morphologic lesion has an apparently crystalline structure and the significance of this stage is discussed. Heinz bodies grow by coalescence and condensation and finally come to lie just beneath the cell surface. Here they result in considerable distortion of cell shape and deformation of the plasma membrane. Thus, phenylhydrazine administration produces in red blood cells extensive ultrastructural alterations both in hemoglobin and in the cell membrane which may have considerable bearing on the fate of these cells in the circulation.


Sign in / Sign up

Export Citation Format

Share Document