Thermal Effect Studies on Flexural Strength of SiCf/C/SiC Composites for Typical Aero Engine Application

Author(s):  
Vijay Petley ◽  
Shweta Verma ◽  
Shankar ◽  
S.N. Ashritha ◽  
S. N. Narendra Babu ◽  
...  
2012 ◽  
Vol 531-532 ◽  
pp. 135-140 ◽  
Author(s):  
Yu Di Zhang ◽  
Hai Feng Hu ◽  
Chang Rui Zhang ◽  
Guang De Li

C/SiC composites have widely application prospects in the field of aeronautic and aerospace for their excellent properties. The joining of C/SiC composites is a key to fabricate large and complex components. In this paper, 1D C/SiC pins were prepared by precursor infiltration and pyrolysis (PIP) process and used to join C/SiC composites by Slurry react (SR) and PIP process. The shear strength of the C/SiC pins with different carbon fiber volumes was investigated with the maximum shear strength as high as 339.46MPa. Influences of C/SiC pins on the joining properties of C/SiC composites were studied. The shear strength and flexural strength of C/SiC-C/SiC joining are improved from 9.17MPa and 30.41MPa without pins to 20.06MPa and 75.03MPa with one C/SiC pin (diameter 2mm), respectively. The reliability of C/SiC-C/SiC joining is also improved with C/SiC pins in that the fracture mode changes from catastrophic without pins to non-catastrophic. The SEM photos show a strong bond between joining layer and C/SiC composites without obvious interface.


1999 ◽  
Vol 271 (1-2) ◽  
pp. 38-42 ◽  
Author(s):  
V.K Srivastava ◽  
K Maile ◽  
A Klenk

2011 ◽  
Vol 675-677 ◽  
pp. 779-782 ◽  
Author(s):  
Si’an Chen ◽  
Hai Feng Hu ◽  
Chang Rui Zhang ◽  
Yu Di Zhang ◽  
Xin Bo He ◽  
...  

Chemical liquid-vapor deposition (CLVD) process is a new style of fast densification, which combines the advantages of PIP process and CVI process. 2D C/SiC composites were prepared at 800~1200°C for 3~4 hours with liquid polycarbosilane and carbon fiber cloth by CLVD process with induction heating, and had the density of 1.7 g/cm3, the flexural strength of 84.6MPa, and the flexural modulus of 20GPa. XRD pattern of the sample proved that the matrix was β-SiC. It was found that SiC deposited mainly around single fiber instead of among fiber bundles and layers.


2015 ◽  
Vol 620 ◽  
pp. 142-148 ◽  
Author(s):  
Ning Li ◽  
Shanbao Zhou ◽  
Xinxin Jin ◽  
Ping Hu ◽  
Peng Wang

2005 ◽  
Vol 287 ◽  
pp. 183-188 ◽  
Author(s):  
Yi Hyun Park ◽  
Dong Hyun Kim ◽  
Han Ki Yoon ◽  
Akira Kohyama

SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. SiCf/SiC composites are promising for various structural materials. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of the process temperature and pressure is key requirements for the fabrication of SiCf/SiC composites by hot pressing method. In the present work, monolithic LPS-SiC was fabricated by hot pressing method at various temperatures. The starting powder was high purity β-SiC nano-powder with an average particle size of 30nm. Compositions of sintering additives were Al2O3 / Y2O3 = 0.7 and 1.5 (wt.%). Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the process temperature. Particularly, relative density of LPS-SiC fabricated at 1820oC with additive composition of Al2O3/Y2O3=1.5(wt.%) was 95%. Also, flexural strength and elastic modulus were 900MPa and 220GPa, respectively. In the fracture surface of this specimen, the size and shape of SiC grains grew up and changed. Also, tortuous crack paths and occurrence of interfacial debonding were observed.


2010 ◽  
Vol 658 ◽  
pp. 352-355 ◽  
Author(s):  
Hong Feng Yin ◽  
Lin Lin Lu

Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effect of processing condition on the microstructure and mechanical properties of the composites were investigated. The results showed that: (1) Hot-pressing temperature influenced the phase constituent of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature. (2) The flexural strength and fracture toughness of composites increased when the content of SiC was increased. When the SiC content was 30wt% the flexural strength and fracture toughness of Ti3SiC2/SiC composite were 371MPa and 6.9MPa•m1/2 respectively. However, when the content of SiC reached 50wt%, the flexural strength and fracture toughness of composites decreased due to high porosity in the composites. (3) The flexural strength and fracture toughness of composites increased with the particle size of SiC added in composites. (4) Ti3SiC2/SiC composites were non-brittle at room temperature.


2014 ◽  
Vol 602-603 ◽  
pp. 430-433 ◽  
Author(s):  
Shuang Zhao ◽  
Xin Gui Zhou ◽  
Hong Lei Wang

Continuous carbon fibre reinforced silicon carbide (C/SiC) composites were fabricated by precursor infiltration and pyrolysis (PIP) process, a mullite/yttrium silicate multilayer coating was prepared by plasma spray method as the oxidation protective coating. The efficiency of the coating against oxidation was characterized by means of heat treatment of the C/SiC composites at 1500 °C in static air for 1 hour. The results indicated that the weight loss of the coated composites was only 3.4 %, and the flexural strength of the composites retained 95.3 % of the original strength.


2015 ◽  
Vol 655 ◽  
pp. 78-81
Author(s):  
Shu He Ai ◽  
Yu Jun Zhang ◽  
Hong Yu Gong ◽  
Qi Song Li

AlN/SiC composites with 5 wt.% Y2O3addition were fabricated by pressureless sintering at 1700-1950 oC. The influences of sintering temperature and SiC content on the relative density, mechanical property and thermal conductivity were studied. With sintering temperature increasing from 1700 oC to 1750 oC, the relative density increased significantly to about 98.0%, without evident changes from 1750 oC to 1900 oC, and then decreased slightly at 1950 oC. As SiC content increased, the flexural strength of composites sintered at 1750 oC increased firstly, and then decreased, obtaining a maximum flexural strength of 337 MPa at 20 wt.% SiC content. Meanwhile, the thermal conductivity decreased from 60 W/(m∙K) to 40 W/(m∙K) with SiC content increasing from 0 wt.% to 30 wt.%. Moreover, in the sintering temperature range from 1750 oC to 1950 oC, the thermal conductivity increased from 45 W/(m∙K) to 55 W/(m∙K) for AlN-10 wt.% SiC composites, but decreased from 40 W/(m∙K) to 36 W/(m∙K) for AlN-30 wt.% SiC composites.


2015 ◽  
Vol 816 ◽  
pp. 152-156
Author(s):  
Xin Ma ◽  
Xin Bo He ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
Yong Li

2D Cf/SiC composites were prepared by precursor infiltration and pyrolysis (PIP) process with spreaded T700-12K plain weave carbon clothes as the reinforcement. The mechanical properties and microstructures were investigated. The composites are compact with few internal defects since the precursor could infiltrate the preform effectively. CVD-PyC interface modified the surface of T700 carbon fiber, a rough surface is helpful for the interfacial combination and the load transfer. For the Cf/PyC/SiC composites, the flexural strength and flexural modulus were 425±23.2 MPa and 36.3±3.1 GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document