Preparation and Properties of 2D C/SiC Composites by CLVD Processing

2011 ◽  
Vol 675-677 ◽  
pp. 779-782 ◽  
Author(s):  
Si’an Chen ◽  
Hai Feng Hu ◽  
Chang Rui Zhang ◽  
Yu Di Zhang ◽  
Xin Bo He ◽  
...  

Chemical liquid-vapor deposition (CLVD) process is a new style of fast densification, which combines the advantages of PIP process and CVI process. 2D C/SiC composites were prepared at 800~1200°C for 3~4 hours with liquid polycarbosilane and carbon fiber cloth by CLVD process with induction heating, and had the density of 1.7 g/cm3, the flexural strength of 84.6MPa, and the flexural modulus of 20GPa. XRD pattern of the sample proved that the matrix was β-SiC. It was found that SiC deposited mainly around single fiber instead of among fiber bundles and layers.

2015 ◽  
Vol 816 ◽  
pp. 152-156
Author(s):  
Xin Ma ◽  
Xin Bo He ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
Yong Li

2D Cf/SiC composites were prepared by precursor infiltration and pyrolysis (PIP) process with spreaded T700-12K plain weave carbon clothes as the reinforcement. The mechanical properties and microstructures were investigated. The composites are compact with few internal defects since the precursor could infiltrate the preform effectively. CVD-PyC interface modified the surface of T700 carbon fiber, a rough surface is helpful for the interfacial combination and the load transfer. For the Cf/PyC/SiC composites, the flexural strength and flexural modulus were 425±23.2 MPa and 36.3±3.1 GPa, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 804-807
Author(s):  
Min Mei ◽  
Xin Bo He ◽  
Xuan Hui Qu ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
...  

The conversion of the liquid polycabosilane (LPCS) into silicon carbide was investigated by IR, XRD, which indicated the feasibility of the transition from LPCS to SiC ceramics above 900°C. The FTIR spectra and XRD Pattern of the Cf/SiC composites show that the matrix deposited at 1200°C has silicon carbide structure with the crystallite size of β-SiC phase of about 41 nm, while the SiC phase is amorphous at 900°C. The carbon fiber reinforced silicon carbide composites (Cf/SiC) were hereby prepared at 900°C and 1200°C, through chemical liquid-vapor deposition (CLVD) process using LPCS as precursor. Flexural strength of 224 MPa for Cf/SiC specimen with density of 1.81g·cm-3was obtained after being prepared at 1200°C for 30 minutes. The load-deflection curve has shown that the fracture behavior of the Cf/SiC composites is a typical non-brittleness. The results indicate that the CLVD process has a great advantage and prospect to prepare Cf/SiC composites in future.


2011 ◽  
Vol 686 ◽  
pp. 419-422
Author(s):  
Tian Heng Xu ◽  
Qing Song Ma ◽  
Zhao Hui Chen

Carbon fiber reinforced silicon carbide composites (Cf/SiC) were derived through precursor infiltration pyrolysis route (PIP) at 1600°C in vacuum atmosphere using polysiloxane as precursor. The matrix of Cf/SiC was characterized by X-ray diffraction and elemental analysis. The results show that crystalline β-SiC can be derived at 1600°C in vacuum from polysiloxane. The flexural strength and fracture toughness of polysiloxane derived from Cf/SiC can reach up to 70 MPa and 2.3MPa·m respectively1/2.


2017 ◽  
Vol 726 ◽  
pp. 137-142 ◽  
Author(s):  
Zhi Hua Chen ◽  
Si'an Chen ◽  
Jin Tai Wu ◽  
Hai Feng Hu ◽  
Yu Di Zhang

The reainforcement of T700 carbon fiber was oxidized at 400°C, as-received and treated carbon fiber reinforced mini Cf/SiC matrix composites were fabricated by precursor infiltration and pyrolysis (PIP) method. The mechanical properties of the composites were determined and compared. The results showed that with the time of oxidation increased, the flexural strength of composites decreased. The flexural modulus and tensile modulus were increased by the 87.8 GPa to 92.9 GPa and 131 GPa to 150 GPa. Without oxidation pretreatment, the composites represented maximum flexural strength of 649 MPa. For 1h oxidation, the composites reached the maximum tensile strength of 821 MPa. However, carbon fiber pre-oxidation for 2h, C/SiC composites mechanical properties appeared to reduce seriously.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2268
Author(s):  
Pavel V Kosmachev ◽  
Vladislav O Alexenko ◽  
Svetlana A Bochkareva ◽  
Sergey V Panin

Laminated composites based on polyetheretherketone (PEEK) and polyimide (PI) matrices were fabricated by hot compression. Reinforcing materials (unidirectional carbon-fiber (CF) tapes or carbon fabric) and their layout patterns were varied. Stress–strain diagrams after three-point flexural tests were analyzed, and both lateral faces of the fractured specimens and fractured surfaces (obtained by optical and scanning electron microscopy, respectively) were studied. It was shown that the laminated composites possessed the maximum mechanical properties (flexural elastic modulus and strength) in the case of the unidirectional CF (0°/0°) layout. These composites were also not subjected to catastrophic failure during the tests. The PEEK-based composites showed twice the flexural strength of the PI-based ones (0.4 and 0.2 GPa, respectively), while the flexural modulus was four times higher (60 and 15 GPa, correspondently). The reason was associated with different melt flowability of the used polymer matrices and varied inter- (intra)layer adhesion levels. The effect of adhesion was additionally studied by computer simulation using a developed two-dimensional FE-model. It considered initial defects between the binder and CF, as well as subsequent delamination and failure under loads. Based on the developed FE-model, the influence of defects and delamination on the strength properties of the composites was shown at different stress states, and the corresponding quantitative estimates were reported. Moreover, another model was developed to determine the three-point flexural properties of the composites reinforced with CF and carbon fabric, taking into account different fiber layouts. It was shown within this model framework that the flexural strength of the studied composites could be increased by an order of magnitude by enhancing the adhesion level (considered through the contact area between CF and the binder).


2012 ◽  
Vol 531-532 ◽  
pp. 135-140 ◽  
Author(s):  
Yu Di Zhang ◽  
Hai Feng Hu ◽  
Chang Rui Zhang ◽  
Guang De Li

C/SiC composites have widely application prospects in the field of aeronautic and aerospace for their excellent properties. The joining of C/SiC composites is a key to fabricate large and complex components. In this paper, 1D C/SiC pins were prepared by precursor infiltration and pyrolysis (PIP) process and used to join C/SiC composites by Slurry react (SR) and PIP process. The shear strength of the C/SiC pins with different carbon fiber volumes was investigated with the maximum shear strength as high as 339.46MPa. Influences of C/SiC pins on the joining properties of C/SiC composites were studied. The shear strength and flexural strength of C/SiC-C/SiC joining are improved from 9.17MPa and 30.41MPa without pins to 20.06MPa and 75.03MPa with one C/SiC pin (diameter 2mm), respectively. The reliability of C/SiC-C/SiC joining is also improved with C/SiC pins in that the fracture mode changes from catastrophic without pins to non-catastrophic. The SEM photos show a strong bond between joining layer and C/SiC composites without obvious interface.


2018 ◽  
Vol 51 (7-8) ◽  
pp. 698-711 ◽  
Author(s):  
Firas Akasheh ◽  
Heshmat Aglan

The present work reports a novel approach to enhance the fracture resistance and notch sensitivity of carbon fiber-reinforced polymer composites utilizing additive manufacturing (3-D printing) fabrication. The 3-D printed composites utilize carbon fiber bundles to reinforce nylon/chopped fiber resin in a multilayered structure configuration. Single-edge (60°) notched samples were printed using Mark Two printer. Three reinforcement schemes were designed and used to manufacture the specimens. The focus was placed on selective reinforcement at the crack tip to arrest crack initiation. The mechanical properties, fracture toughness, and fracture behavior of the printed composites were evaluated. It was found that wrapping fiber around the notch effectively blunted the notch and redirected crack propagation away from the notch tip, thereby lengthening the crack path and leading to improved fracture resistance. It was also found that such improvement reaches a saturation level. Excessive notch reinforcement beyond optimal limit can reverse the gains in fracture resistance due to notch-targeted reinforcement. Examination of the fracture surface morphology of the printed composites reveals lack of fusion of the sizing of the individual continuous carbon fiber bundles and the lack of adhesion between the matrix layers (nylon/chopped fiber resin) and the adjacent carbon fiber bundle reinforcement. Damage to the fibers within the carbon bundle was also observed. Thus, a synergetic effect of the carbon fiber bundles reinforcement and the matrix requires more optimization to manufacture carbon-reinforced polymer composites using 3-D printing.


2021 ◽  
pp. 002199832110316
Author(s):  
IA Abdulganiyu ◽  
INA Oguocha ◽  
AG Odeshi

The effects of microfiller addition on the flexural properties of carbon fiber reinforced phenolic (CFRP) matrix composites were investigated. The CFRP was produced using colloidal silica and silicon carbide (SiC) microfillers, 2 D woven carbon fibers, and two variants of phenolic resole (HRJ-15881 and SP-6877). The resins have the same phenol and solid content but differ in their viscosities and HCHO (formaldehyde) content. The weight fractions of microfillers incorporated into the phenolic matrix are 0.5 wt.%, 1 wt.%, 1.5 wt.%, and 2 wt.%. Flexural properties were determined using a three-point bending test and the damage evolution under flexural loading was investigated using optical and scanning electron microscopy. The results indicated that the reinforcement of phenolic resins with carbon fibers increased the flexural strength of the HRJ-15881 and SP-6877 by 508% and 909%, respectively. The flexural strength of the CFRP composites further increased with the addition of SiC particles up to 1 wt.% SiC but decreased with further increase in the amount of SiC particles. On the other hand, the flexural modulus of the CFRP composites generally decreased with the addition of SiC microfiller. Both the flexural strength and flexural modulus of the CFRP did not improve with the addition of colloidal silica particles. The decrease in flexural properties is caused by the agglomeration of the microfillers, with colloidal silica exhibiting more tendency for agglomeration than SiC. The fractured surfaces revealed fiber breakage, matrix cracking, and delamination under flexural loading. The tendency for failure worsened at microfiller addition of ≥1.5 wt.%.


2019 ◽  
Vol 8 (4) ◽  
pp. 6972-6977

The use of natural fiber composite has been widely promoted in many industries such as construction, automotive and even aerospace. Natural fibers can be extracted from plants that are abundantly available in the form of waste such as sunflower seed shells (SSS) and groundnut shells (GNS). These fibers were chosen as the reinforcement in epoxy to form composites. The performance of composites was evaluated following the ASTM D3039 and ASTM D790 for tensile and flexural tests respectively. Eight types of composites were prepared using SSS and GNS fibers as reinforcement and epoxy as the matrix with the fiber content of 20wt %. The fibers were untreated and treated with Sodium Hydroxide (NaOH) at various concentrations (6%, 10%, 15%, and 20%) and soaking time (24, 48 and 72 hours). The treatment has successfully enhanced the mechanical properties of both composites, namely SSS/epoxy and GNS/epoxy composites. The SSS/epoxy composite has the best mechanical properties when the fibers were treated for 48 hours using 6% of NaOH that produced 22 MPa and 13 MPa of tensile and flexural strength respectively. Meanwhile, the treatment on groundnut shells with 10% sodium Hydroxide for 24 hours has increased the Flexural strength tremendously (53%), however no significant effect on the tensile strength. The same trend was also observed on the tensile and flexural modulus. The increase of 41% in flexural modulus after treatment with 10% NaOH for 24 hours was also the evidence of mechanical properties enhancement. The evidence of improved fiber and matrix bonding after fiber treatment was also observed using a scanning electron microscope (SEM). The SSS/epoxy composites performed better in tensile application, meanwhile the GNS/epoxy composites are good in flexural application.


2007 ◽  
Vol 336-338 ◽  
pp. 1251-1253
Author(s):  
Ke Jian ◽  
Zhao Hui Chen ◽  
Qing Song Ma ◽  
Hai Feng Hu

SR-249, a kind of polysiloxane (PSO), was used as the precursor for the first time to fabricate carbon fiber cloth reinforced silicon oxycarbide (2D Cf/Si-O-C) composites. The cure and pyrolysis of the SR-249 as well as the mechanical properties, oxidation and thermal shock behavior of the composites were investigated in the paper. The flexural strength and fracture toughness of the composites reached 217.6 MPa and 12.5 MPa·m1/2, respectively. After soaked at 1300°C under the static air for 10 min, the composites retained 58.5% flexural strength and 64.5% fracture toughness. The thermal shock behavior of the composites was studied by water quenched method. The composites retained 49.3% flexural strength and 47.4% fracture toughness after 10 times of quenching from 1200 to 20°C.


Sign in / Sign up

Export Citation Format

Share Document