Unbonded Flexible Pipe Under External Pressure

2017 ◽  
pp. 149-170
Author(s):  
Alfredo Gay Neto ◽  
Clóvis de Arruda Martins

When submitted to high external pressure, flexible pipes may collapse. If the external sheath is damaged, all the external pressure is directly applied on the internal polymeric layer that transmits the loading to the carcass layer, which can fail due to this effect, leading to wet collapse. This failure mode must be taken into account in a flexible pipe design. A model can be set up neglecting the influence of the pressure armor, but this assumption may underestimate the wet collapse pressure value. This work aims to include the pressure armor effect in the numerical prediction of wet collapse. The main contribution of the pressure armor to the flexible pipe resistance to collapse is to be a constraint to the radial displacement of the carcass and the internal polymeric layers. Two models were developed to find the wet collapse pressure in flexible pipes. A first study was done using a ring approximation three-dimensional (3D) finite element method (FEM) model. Comparisons are made with more simplified models using a 3D FEM equivalent ring approximation. The aim is to clarify the mechanical behavior of the pressure armor in the wet collapse scenario. Parametric studies of initial ovalization of carcass and initial gaps and interference between polymeric layer and pressure armor are made and discussed.


Author(s):  
Linfa Zhu ◽  
Zhimin Tan ◽  
Victor Pinheiro Pupo Nogueira ◽  
Jian Liu ◽  
Judimar Clevelario

Increasing oil exploitation in deepwater regions is driving the R&D of flexible pipes which are subjected to high external pressure loads from the hydrostatic head during their installation and operation. One of the challenges of flexible pipe design for such applications is to overcome the local buckling failure modes of tensile armor layers due to the combination of high external pressure, compressive loads and pipe curvature. This paper presents the latest progress in local buckling behavior prediction theory and the qualification process of flexible pipes. First, the mechanisms of two types of buckling behaviors, radial birdcage buckling and lateral buckling, are described. For each failure mode, the analytical buckling prediction theory is presented and the driving parameters are discussed. As part of the qualification process, the ability to resist radial birdcage and lateral buckling must be demonstrated. Suitable test protocols are required to represent the installation and operation conditions for the intended applications by deep immersion performance (DIP) tests. Several flexible pipes were designed based on radial birdcage and lateral buckling prediction theory, and pipe samples were manufactured using industrial production facilities for DIP tests. The results clearly show that flexible pipes following current design guidelines are suitable for deepwater applications. An alternative in-air rig was developed to simulate the DIP tests in a controlled laboratory environment to further validate the model prediction as a continuous development.


Author(s):  
Upul S. Fernando ◽  
Andrew P. Roberts ◽  
Michelle Davidson

Abstract Carcass, the innermost layer of a flexible pipe structure is designed to prevent the collapse of the pressure sheath due to external pressure. Weakness, damage or failure of the carcass layer can result in collapse with associated loss of production and potentially serious risk to pipe integrity and hydrocarbon leakage to the environment. Avoiding carcass failure in service is therefore an essential consideration during the design of unbonded flexible pipes. Carcass failure is rare in service. This paper highlights the three possible failure modes and presents further analysis on the fatigue failure mode, relevant to dynamic service. Two key features of carcass manufacture are identified as causes for dynamic stress; locking of the carcass profile due to extended pitch and polymer ingress within the carcass cavity. Guidelines for the design of carcass profiles, setting safe pitch limits and appropriate barrier profile controls to mitigate carcass fatigue failure in dynamic service are presented.


Author(s):  
Laurent Paumier ◽  
Daniel Averbuch ◽  
Antoine Felix-Henry

In the design of flexible pipelines for offshore field developments, the determination of the pipe resistance while subjected to external pressure and bending is very important in deepwater and is now required by the ISO and API standards. One of the critical failure modes being associated with this type of loads is the hydrostatic collapse. The collapse value of flexible pipe is calculated with a model validated with over 200 tests performed on all possible pipe constructions. This model has an analytical basis, and has been established in the past, leading to a fast and straightforward use. In order to address the bent collapse failure mode, Technip and IFP have therefore developed and improved over the past few years an analytical calculation model, based on the collapse model for straight pipes. The purpose of this paper is to present this design methodology and its validation. The modelling principles of the collapse calculation of straight flexible pipes are firstly presented, along with the main hypotheses. The adaptation to the case of curved pipes is detailed in the sequel of the paper. Many types of flexible pipe samples have been tested up to collapse both in straight and curved configurations. The results of these tests have been used to validate this model. In the paper, several tests results will be presented and compared with the calculations. This model is effective, of straightforward use, and has been certified by a third party. It allows Technip to optimize the flexible pipe design in particular for ultra-deep water applications, where external pressure resistance is very important.


2017 ◽  
Vol 13 (3) ◽  
pp. 320-329 ◽  
Author(s):  
Yong Bai ◽  
Peihua Han ◽  
Ting Liu ◽  
Shuai Yuan ◽  
Gao Tang

Author(s):  
Alireza Ebrahimi ◽  
Shawn Kenny ◽  
Amgad Hussein

Flexible pipes can be used as risers, jumpers, and flowlines that may be subject to axial forces and out-of-plane bending motion due to operational and environmental loading conditions. The tensile armor wires provide axial stiffness to resist these loads. Antibirdcaging tape is used to provide circumferential support and prevent a loss of stability for the tension armor wires, in the radial direction. The antibirdcaging tape may be damaged where a condition known as “wet annulus” occurs that may result in the radial buckling (i.e., birdcaging mechanism) of the tensile armor wires. A three-dimensional continuum finite element (FE) model of a 4 in. flexible pipe is developed using abaqus/implicit software package. As a verification case, the radial buckling response is compared with similar but limited experimental work available in the public domain. The modeling procedures represent an improvement over past studies through the increased number of layers and elements to model contact interactions and failure mechanisms. A limited parameter study highlighted the importance of key factors influencing the radial buckling mechanism that includes external pressure, internal pressure, and damage, related to the percentage of wet annulus. The importance of radial contact pressure and shear stress between layers was also identified. The outcomes may be used to improve guidance in the engineering analysis and design of flexible pipelines and to support the improvement of recommended practices.


Author(s):  
Philippe Secher ◽  
Fabrice Bectarte ◽  
Antoine Felix-Henry

This paper presents the latest progress on the armor wires lateral buckling phenomena with the qualification of flexible pipes for water depths up to 3,000m. The design challenges specific to ultra deep water are governed by the effect of the external pressure: Armor wires lateral buckling is one of the failure modes that needs to be addressed when the flexible pipe is empty and subject to dynamic curvature cycling. As a first step, the lateral buckling mechanism is described and driving parameters are discussed. Then, the program objective is presented together with flexible pipe designs: - Subsea dynamic Jumpers applications; - Sweet and Sour Service; - Internal diameters up to 11″. Dedicated flexible pipe components were selected to address the severe loading conditions encountered in water depths up to 3,000m. Hydrostatic collapse resistance was addressed by a thick inner carcass layer and a PSI pressure vault. Armor wires lateral buckling was addressed by the design and industrialization of new tensile armor wires. The pipe samples were manufactured using industrial production process in the factories in France and Brazil. The available testing protocols are then presented discussing their advantages and drawbacks. For this campaign, a combination of Deep Immersion Performances (DIP) tests and tests in hyperbaric chambers was selected. The DIP test campaign was performed End 2009 beginning 2010 in the Gulf of Mexico using one of Technip Installation Vessel. These tests replicated the actual design conditions to which a flexible pipe would be subjected during installation and operation. The results clearly demonstrated the suitability of flexible pipes as a valid solution for ultra deep water applications. In addition, the DIP tests results were compared to the tests in hyperbaric chambers giving consistent results. This campaign provided design limitations of the new designs for both 9″ and 11″ internal diameter flexible pipes, in sweet and sour service in water depths up to 3,000m.


2011 ◽  
Vol 189-193 ◽  
pp. 1822-1826 ◽  
Author(s):  
Wei Huang ◽  
Zhong You

Flexible pipes with helical reinforcement are widely used in the marine engineering and tissue engineering because of their low bending stiffness. Through appropriate design, they could also meet the strength requirement. All studies on this kind of structures regard the pitch angle of helical wires, strips or fibers as a vital parameter influencing the mechanical properties. In this study, we compare the tensile property of pipes with helical reinforcements braided in different initial pitch angles. Contact pressure is taken into consideration and eliminated by using deformation compatibility equation. The pitch angle changes under axial tension which induces the geometric nonlinearity. It is noted that when the pitch angle is larger than a critical value, even if there is no internal or external pressure, helixes will contact with the core under axial tension. But the initial pitch angle can not be too large since the contact pressure will induce partial buckling of the flexible pipe.


Author(s):  
Le´a M. B. Troina ◽  
Lui´z F. L. Rosa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

A flexible pipe is a composite structure, built up of several steel and plastic layers, which has been increasingly used in floating offshore petroleum production systems. It is characterized by presenting low bending stiffness and high capacity with regard to internal and external pressure and tension. In order to determine some physical properties of a flexible pipe specimen, which is useful for a global analysis, and to better understand the behaviour of its tensile armour layers, when the pipe is submitted to low tension loads, a series of experimental tests were performed by COPPE/UFRJ and CENPES/PETROBRAS. In this context, bending tests, with internal pressure variation, were carried out on a 4” internal diameter flexible pipe. In some specific cross sections, the outer plastic sheath of the specimen was removed to enable the installation of electrical extensometers in the tensile armour layer. Some experimental results were compared to those obtained through analytical models, and the discrepancies are discussed.


Author(s):  
Otávio Sertã ◽  
Rafael Fumis ◽  
Adrian Connaire ◽  
John Smyth ◽  
Rafael Tanaka ◽  
...  

During installation and operation a flexible pipe may be subjected to high compressive forces, high cyclic curvatures and external pressures leading to high reverse end-cap loads. Under such loading conditions, which occur particularly in the touchdown region for deep water applications, the limiting condition for the flexible pipe can be the compressive stability of the tensile armour wires. Two potential instability modes are possible: radial mode (birdcaging) and lateral mode (lateral wire disorganization). Previous work on the subject has established the key factors which influence the onset of each buckling mode [1],[2],[3] and [4]. In order to ensure the feasibility of flexible designs for applications with increasing water depth, it is important to improve the knowledge of the mechanisms which can lead to instability of armour wires and enhance the ability to predict with greater assurance, the particular conditions which increase the risk of wire instability. The focus of this work is the comparison of finite element prediction of radial buckling (birdcaging) with physical testing results under loading states that lead a pipe to birdcaging failure. The numerical model incorporates all tensile armor wires and their interactions with each other and adjacent layers. The outer sheath and reinforcing tape layers are explicitly represented, while the inner layers of the pipe (pressure armour and carcass sheath) are idealized using a homogeneous representation. The model also incorporates the effects of manufacturing pre-tension and hoop strength in the anti-birdcaging tape layers which are critical determinants for the onset of buckling. A key aspect of the method presented is the means by which the loading is applied. Specifically, the modeling handles the simultaneous and controlled application of end rotations, axial compression and radial resistance of the tapes through to the point of tape failure, pipe ovalisation and subsequent radial displacement and buckling of individual wires. In summary, in this paper a solid modeling approach is presented, which is compared with full a scale sample test data, that enables the simulation of a flexible pipe undergoing large combined compression, curvatures and pressure loading.


Sign in / Sign up

Export Citation Format

Share Document