Chlorination Enabling a Low‐cost Benzodithiophene‐based Wide‐bandgap Donor Polymer with an Efficiency of over 17%

2021 ◽  
pp. 2105483
Author(s):  
Hang Wang ◽  
Hao Lu ◽  
Ya‐Nan Chen ◽  
Guangliu Ran ◽  
Andong Zhang ◽  
...  
Keyword(s):  
Low Cost ◽  
2006 ◽  
Vol 957 ◽  
Author(s):  
Jiping Cheng ◽  
Ming Fu ◽  
Yunjin Zhang ◽  
Ruyan Guo

ABSTRACTPhotodetectors based on wide-bandgap semiconductors have demonstrated several advantages over traditional ultraviolet (UV) detectors (photomultiplier tubes and Si-based UV detectors) such as low power consumption, high stability, and no need of other optical filters. ZnO stands a good chance of being a candidate material for solar-blind UV detection because of its direct bandgap of 3.37eV and high photoresponse. In this work, single crystal ZnO microtubes synthesized using a microwave-heating growth method and their UV photodetection properties were studied. The ZnO microtubes exhibited relatively fast UV photoresponse with a cut-off wavelength ∼370 nm, indicating their potential applications as high efficient and low cost UV detectors.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4981
Author(s):  
Ekaterina Abramushkina ◽  
Assel Zhaksylyk ◽  
Thomas Geury ◽  
Mohamed El Baghdadi ◽  
Omar Hegazy

The development of electric vehicles (EVs) is an important step towards clean and green cities. An electric powertrain provides power to the vehicle and consists of a charger, a battery, an inverter, and a motor as the main components. Supplied by a battery pack, the automotive inverter manages the power of the motor. EVs require a highly efficient inverter, which satisfies low cost, size, and weight requirements. One approach to meeting these requirements is to use the new wide-bandgap (WBG) semiconductors, which are being widely investigated in the industry as an alternative to silicon switches. WBG devices have superior intrinsic properties, such as high thermal flux, of up to 120 W/cm2 (on average); junction temperature of 175–200 °C; blocking voltage limit of about 6.5 kV; switching frequency about 20-fold higher than that of Si; and up to 73% lower switching losses with a lower conduction voltage drop. This study presents a review of WBG-based inverter cooling systems to investigate trends in cooling techniques and changes associated with the use of WBG devices. The aim is to consider suitable cooling techniques for WBG inverters at different power levels.


2013 ◽  
Vol 740-742 ◽  
pp. 85-90 ◽  
Author(s):  
Heikki I. Helava ◽  
Evgeny N. Mokhov ◽  
Oleg A. Avdeev ◽  
Mark G. Ramm ◽  
Dmitri P. Litvin ◽  
...  

Recently the wide bandgap semiconductors, silicon carbide (SiC) and aluminum nitride (AlN), have acquired increased importance due to the unique properties that make them applicable to a variety of rapidly-emerging, diverse technologies. In order to meet the challenges posed by these applications the materials need to be manufactured with the highest possible quality, both structural and chemical, at increasingly lower cost. This requirement places rather extreme constraints on the crystal growth as the simultaneous goals of high quality and low cost are generally incompatible. Refractory metal carbide technology, particularly, tantalum carbide (TaC), was originally developed for application in highly corrosive and reactive environments. The SiC group of Prof Yuri A Vodakov (for example, [1]) at Karmon Ltd in St Petersburg, Russia was the first to study and utilize the properties of refractory metal carbides, first for the growth of SiC and later for the growth of AlN. We discuss how the refractory metal carbides can answer many of the problems of growing SiC and AlN in a relatively simple and low cost manner.


2021 ◽  
Vol 38 (12) ◽  
pp. 126701
Author(s):  
Xiaowen Han ◽  
Yiming Lu ◽  
Ying Liu ◽  
Miaomiao Wu ◽  
Yating Li ◽  
...  

Room-temperature thermoelectric materials are important for converting heat into electrical energy. As a wide-bandgap semiconductor material, CuI has the characteristics of non-toxicity, low cost, and environmental friendliness. In this work, CuI powder was synthesized by a wet chemical method, then CuI film was formed by vacuum assisted filtration of the CuI powder on a porous nylon membrane, followed by hot pressing. The film exhibits a large Seebeck coefficient of 600 μV · K−1 at room temperature. In addition, the film also shows good flexibility (∼95% retention of the electrical conductivity after being bent along a rod with a radius of 4 mm for 1000 times). A finger touch test on a single-leg TE module indicates that a voltage of 0.9 mV was immediately generated within 0.5 s from a temperature difference of 4 K between a finger and the environment, suggesting the potential application in wearable thermal sensors.


2008 ◽  
Vol 600-603 ◽  
pp. 77-82 ◽  
Author(s):  
Albert A. Burk ◽  
Michael J. O'Loughlin ◽  
Joseph J. Sumakeris ◽  
C. Hallin ◽  
Elif Berkman ◽  
...  

The development of SiC bulk and epitaxial materials is reviewed with an emphasis on epitaxial growth using high-throughput, multi-wafer, vapor phase epitaxial (VPE) warm-wall planetary reactors. It will be shown how the recent emergence of low-cost high-quality 100-mm diameter epitaxial SiC wafers is enabling the economical production of advanced wide-bandgap Power–Switching devices.


2019 ◽  
Vol 39 (7) ◽  
pp. 636-641 ◽  
Author(s):  
Ismail Borazan ◽  
Yasin Altin ◽  
Ali Demir ◽  
Ayse Celik Bedeloglu

Abstract Polymer-based organic solar cells are of great interest as they can be produced with low-cost techniques and also have many interesting features such as flexibility, graded transparency, easy integration, and lightness. However, conventional wide bandgap polymers used for the light-absorbing layer significantly affect the power conversion efficiency of organic solar cells because they collect sunlight in a given spectrum range and due to their limited stability. Therefore, in this study, polymers with different bandgaps were used, which could allow for the production of more stable and efficient organic solar cells: P3HT as the wide bandgap polymer, and PTB7 and PCDTBT as low bandgap polymers. These polymers with different bandgaps were combined with PCBM to obtain increased efficiency and optimum photoactive layer in the organic solar cell. The obtained devices were characterized by measuring optical, photoelectrical, and morphological properties. Solar cells using the PTB7 and PCDTBT polymers had more rough surfaces than the reference cell using P3HT. The use of low-bandgap polymers improved Isc significantly, and when combined with P3HT, a higher Voc was obtained.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1186
Author(s):  
Alexander Axelevitch

Transparent conductive oxide (TCO) thin films represent a large class of wide-bandgap semiconductors applied in all fields of micro- and optoelectronics. The most widespread material applied for the creation of TCO coatings is indium-tin oxide (ITO). At the same time, there are plurality trends to change the high-cost ITO on other materials, for example, on the ZnO doped by different elements such as Al, Mn, and Sb. These films require mobile and low-cost evaluation methods. The dynamic hot-probe measurement system is one of such techniques that can supplement and sometimes replace existing heavy systems such as the Hall effect measurements or the Haynes–Shockley experiments. The theoretical basis and the method of analysis of the recorded dynamic hot-probe characteristics measured at different temperatures were presented in this work. This method makes it possible to extract the main parameters of thin films. Commercial thin ITO films and new transparent conducting ZnO:Al layers prepared by magnetron co-sputtering were studied by the proposed method. The measured parameters of commercial ITO films are in agreement with the presented and reference data. In addition, the parameters of ZnO:Al thin films such as the majority charge carriers type, concentration, and mobility were extracted from dynamic hot-probe characteristics. This method may be applied also to other wide-bandgap semiconductors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng-Hsin Chen ◽  
Wei-Ning Chou ◽  
Vin-Cent Su ◽  
Chieh-Hsiung Kuan ◽  
Hoang Yan Lin

AbstractMetalens is one of the most promising applications for the development of metasurfaces. A wide variety of materials have been applied to metalenses working at certain spectral bands in order to meet the requirements of high efficiency and low-cost fabrication. Among these materials, wide-bandgap gallium nitride (GaN) is one of the most promising materials considering its advantages especially in semiconductor manufacturing. In this work, GaN has been utilized to fabricate the high-performance metalenses operating at visible wavelengths of 405, 532, and 633 nm with efficiencies up to 79%, 84%, and 89%, respectively. The homemade 1951 United State Air Force (UASF) resolution test chart has also been fabricated in order to provide resolvable lines with widths as small as 870 nm. As shown in the experimental results for imaging, the metalens designed at 405 nm can provide extremely high resolution to clearly resolve the smallest lines with the nano-sized widths in the homemade resolution test chart. These extraordinary experimental results come from our successful development in design and fabrication for the metalenses composed of high-aspect-ratio GaN nanoposts with nearly vertical sidewalls.


2019 ◽  
Vol 963 ◽  
pp. 823-826
Author(s):  
Xiang Guo Wang ◽  
Masayuki Yamamoto

The Super Cascode is a series connected structure with a normally-off low voltage Si-MOSFET and multiple normally-on wide bandgap semiconductors. It has low switching losses compared with silicon based bipolar devices, and low on-resistance and low cost compared with other single high voltage normally-off wide bandgap semiconductor devices. In practice, however, there are inevitable parasitic inductances, which result in the increase of switching losses. The method is proposed to eliminate the common-source inductances (CSIs), such as using stack-die configuration with each device and adding an additional inductance in the gate loop of Si-MOSFET. It is numerically shown that the rise and fall times of the proposed method were 33.5% and 7.2% faster than the conventional one, respectively.


Sign in / Sign up

Export Citation Format

Share Document