Foliar application uniconazole enhanced lodging resistance of hybrid indica rice by altering basal stem quality under poor light stress

2021 ◽  
Author(s):  
Wujun Zhang ◽  
Xiong Yao ◽  
Xiujian Duan ◽  
Qiangming Liu ◽  
Yongqun Tang ◽  
...  
2021 ◽  
Vol 20 (5) ◽  
pp. 1204-1215
Author(s):  
Wen-xia WANG ◽  
Jie DU ◽  
Yan-zhi ZHOU ◽  
Yong-jun ZENG ◽  
Xue-ming TAN ◽  
...  

2012 ◽  
Vol 92 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Uma Rani Sinniah ◽  
Sri Wahyuni ◽  
Bambang Surya Adji Syahputra ◽  
Saikat Gantait

Sinniah, U. R., Wahyuni, S., Syahputra, B. S. A. and Gantait, S. 2012. A potential retardant for lodging resistance in direct seeded rice ( Oryza sativa L.). Can. J. Plant Sci. 92: 13–18. Yield losses in rice are heavy, particularly when lodging occurs after heading. A major contributing factor towards lodging is the tall phenotypic characteristic of the plant. In rice, application of growth retardant can reduce plant height by means of internode retardation. In this study, paclobutrazol at 50, 100 and 200 ppm was applied as a foliar application at panicle initiation on MR 219 and MR 84 cultivars and its effects on growth, lodging resistance and yield were studied. Foliar-applied growth retardant inhibited plant growth and retarded internode and culm length but increased culm diameter. All treated plants had higher bending resistance compared with the control. A significant positive correlation was observed between increased culm diameter and stem bending resistance (r=0.885). Histological studies showed greater compaction of parenchyma cells with thickening of parenchyma cell walls. Treatments with either 50 or 100 ppm paclobutrazol gave significant retardation of internodes and gave higher stem bending resistance with significant increase in yield.


2019 ◽  
Vol 70 (9) ◽  
pp. 772 ◽  
Author(s):  
Su-Wei Feng ◽  
Zhen-Gang Ru ◽  
Wei-Hua Ding ◽  
Tie-Zhu Hu ◽  
Gan Li

Winter wheat (Triticum aestivum L.) production in the North China Plain (NCP) is threatened by wheat lodging. Therefore, enhancing plant lodging resistance by improving stem quality traits is crucial to maintaining high stable yields of winter wheat. A consecutive 7-year field experiment was conducted to study the effects of stem traits on lodging resistance and the yield of four winter wheat cultivars (Bainong 418, Aikang 58, Wenmai 6 and Zhoumai 18). The results indicated that rainfall is often accompanied by strong winds that can cause lodging in the field. Stalk bending strength and wall thickness of the second internode showed significant negative correlations with lodging index, and a higher lodging index indicated increased lodging risk, which, in turn, could seriously affect the grain yield of wheat. Significant regression relationships were observed between lodging index and population lodging resistance strength, as measured using a crop lodging resistance electronic measuring device. Statistical analysis revealed that yield components and the grain yield of Bainong 418 were higher than those of the other cultivars; there was no significant difference between Bainong 418 and Aikang 58 in lodging index, stalk bending strength or single-stalk and population lodging resistance strengths at anthesis and the middle filling stages, but the mean plant height of Bainong 418 was significantly higher than that of Aikang 58. These results provide a new and reliable method for assessing lodging resistance capacity and indicate that greater lodging resistance, as determined by simultaneously considering plant height and basal stem strength, is an important way to achieve high, stable yield in winter wheat.


2009 ◽  
Vol 36 (3) ◽  
pp. 222 ◽  
Author(s):  
Ramani Kumar Sarkar ◽  
Debabrata Panda

Rice (Oryza sativa L.) plants experience multiple abiotic stresses when they are submerged. In addition to the effects of submergence on gas exchange, water also creates shading of submerged plants. It is believed that responses to submergence are actually responses to low light stress, although during complete submergence in addition to low light other environmental factors like reduce movement of gases affect the plant growth, and therefore, the consequences of submergence are not always alike to shade. We monitored the extent to which shade and submergence change the plant height, chlorophyll a fluorescence characteristics and CO2 photosynthetic rate in three Indica rice cultivars, namely Sarala, Kalaputia and Khoda, which differed in submergence tolerance. There were both similarities and dissimilarities between the consequence of shade and submergence on rice plants. Under shade conditions, elongation growth was greater in submergence tolerant cultivars than the sensitive cultivar, whereas elongation growth was greater under submergence in sensitive cultivar. The reduction in chlorophyll content, damage to PSII, and decrease in CO2 photosynthetic rate was more notable under submergence than the shade conditions. Our results show that several JIP-test parameters clearly distinguish between submergence tolerant and sensitive cultivars, and responses to submergence among different rice cultivars differ depending on their sensitivity to submergence. There were different interactions between cultivar and shade (~low light) and cultivar and submergence.


2005 ◽  
Vol 81 (4) ◽  
pp. 538-547 ◽  
Author(s):  
Douglas G Pitt ◽  
F. Wayne Bell

Stand structure and composition for planted white spruce (Picea glauca (Moench) Voss) and other naturally regenerating commercial species were compared seven years after the testing of five conifer release alternatives on three boreal mixedwood sites. No release resulted in aspen (Populus tremuloides Michx.) -dominated stands with 89% stocking and the highest basal areas (BAs, 5.1 m2/ha) and stem volume indices (SVIs, 10.7 m3/ha) observed. Release by manual or machine cutting increased planted spruce BA and SVI by 67 and 38%, respectively. However, this treatment also caused significant root and stump suckering of aspen, more than doubling stem densities and increasing stocking by 12% over untreated areas. Although cutting reduced the height of aspen from 6 m (untreated) to 2–3 m, equal to or just taller than planted spruce, it is likely that future growth will result in deciduous-dominated mixedwoods. Broadcast foliar application with Release® herbicide temporarily reduced the size of aspen, without causing the increased regeneration observed following cutting. This produced a more varied stand structure that promoted the stature of planted spruce, doubling dominant spruce stocking, BAs, and SVIs, and leading to a more balanced mixedwood. Broadcast release with Vision® herbicide produced conifer-dominated stands with few deciduous stems; these areas contained the lowest observed BAs (1.7 m2/ha) and SVIs (1.9 m3/ha). Relatively low planting densities (1350 sph), coupled with near complete deciduous removal in these plots, created very open-grown conditions that threaten overall productivity and stem quality of the spruce. The five approaches tested are capable of producing a range of stand conditions found in a healthy boreal mixedwood landscape. Key words: boreal mixedwoods, white spruce, trembling aspen, vegetation management, fibre production


2020 ◽  
Vol 71 (1) ◽  
pp. 12 ◽  
Author(s):  
Irshad Ahmad ◽  
Muhammad Kamran ◽  
Ziyan Guo ◽  
Xiangping Meng ◽  
Shahzad Ali ◽  
...  

Lodging in plants is an important constraint that leads to yield losses and cause problems with mechanical harvesting. This research was aimed at determining the effects of foliar application of uniconazole or ethephon on lignin metabolism, characteristics of second basal internode and their relationship with lodging resistance in winter wheat (Triticum aestivum L.). In separate experiments, uniconazole was sprayed on the foliage at concentrations of 0, 15, 30 and 45 mg L–1, and ethephon at concentrations of 0, 50, 75 and 100 mg L–1 at the four-leaf stage. Foliar application of uniconazole or ethephon significantly reduced the lodging rate by increasing the lignin content and optimising basal-internode characteristics. Lignin content was significantly positively correlated with breaking strength, and negatively correlated with lodging rate, whereby the higher lignin content in the second basal internode significantly improved the lodging resistance and reduced the lodging rate in the wheat crop. Foliar application of uniconazole or ethephon also increased the breaking strength, internode diameter, wall thickness and internode plumpness of the second basal internode; maximum values were obtained with uniconazole at 30 mg L–1 and with ethephon at 75 mg L–1. Grain yield, lignin content and lignin-related enzyme activities of phenylalanine ammonia-lyase, tyrosine ammonia-lyase, cinnamyl alcohol dehydrogenase and peroxidase were all significantly improved with the foliar application of uniconazole or ethephon. These results suggest that lignin content in the second basal internode in wheat was closely related with lodging resistance. Foliar application of uniconazole or ethephon at the four-leaf stage reduced the lodging rate, and the concentration showing the greatest effects was 30 mg L–1 for uniconazole or 75 mg L–1 for ethephon.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 685 ◽  
Author(s):  
Andreia Garrido ◽  
João Serôdio ◽  
Ric De Vos ◽  
Artur Conde ◽  
Ana Cunha

Climate changes may cause severe impacts both on grapevine and berry development. Foliar application of kaolin has been suggested as a mitigation strategy to cope with stress caused by excessive heat/radiation absorbed by leaves and grape berry clusters. However, its effect on the light micro-environment inside the canopy and clusters, as well as on the acclimation status and physiological responses of the grape berries, is unclear. The main objective of this work was to evaluate the effect of foliar kaolin application on the photosynthetic activity of the exocarp and seeds, which are the main photosynthetically active berry tissues. For this purpose, berries from high light (HL) and low light (LL) microclimates in the canopy, from kaolin-treated and non-treated, irrigated and non-irrigated plants, were collected at three developmental stages. Photochemical and non-photochemical efficiencies of both tissues were obtained by a pulse amplitude modulated chlorophyll fluorescence imaging analysis. The maximum quantum efficiency (Fv/Fm) data for green HL-grown berries suggest that kaolin application can protect the berry exocarp from light stress. At the mature stage, exocarps of LL grapes from irrigated plants treated with kaolin presented higher Fv/Fm and relative electron transport rates (rETR200) than those without kaolin. However, for the seeds, a negative interaction between kaolin and irrigation were observed especially in HL grapes. These results highlight the impact of foliar kaolin application on the photosynthetic performance of grape berries growing under different light microclimates and irrigation regimes, throughout the season. This provides insights for a more case-oriented application of this mitigation strategy on grapevines.


Sign in / Sign up

Export Citation Format

Share Document