One‐time N fertilization reduces greenhouse emissions and N leaching while maintaining high yields in a rape‐rice rotation system

2021 ◽  
Author(s):  
Wuhan Ding ◽  
Haojie Lei ◽  
Jing Zhang ◽  
Ligang Wang ◽  
Jianfeng Zhang ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2354
Author(s):  
Asher Bar-Tal ◽  
Escain Kiwonde ◽  
Beeri Kanner ◽  
Ido Nitsan ◽  
Raneen Shawahna ◽  
...  

The overall aim of this research was to optimize nitrogen (N) fertilization of plants under desalinated water and a wide range of chloride concentrations for high yield while minimizing downward leaching of nitrate and chloride. The response of two crops, lettuce and potato, to N concentration (CN) in the irrigating solution using desalinated and wide range of Cl concentrations (CCL) was evaluated. The yields of both crops increased with N up to optimal CN of the irrigating solution and decreased as CCL increased. Optimal CN in both crops was higher in the desalinated water than high CCL treatments. N uptake by plants increased with CN in the irrigating solution and the highest uptake was at low CCL. As expected, N fertilization suppressed Cl accumulation in plant tissues. Drainage of N and Cl increased with increase in CCL in the irrigating solution and N fertilization above optimal CN resulted in steep rise in downward N leaching. The overall conclusion is that as water quality is improved through desalination, higher N supply is required for high yields with less groundwater pollution by downward leaching of N and Cl.


Nitrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 43-57
Author(s):  
Rhys Rebello ◽  
Paul J. Burgess ◽  
Nicholas T. Girkin

Tea (Camellia sinensis L.) is the most widely consumed beverage in the world. It is mostly grown in the tropics with a heavy dependence on mineral nitrogen (N) fertilisers to maintain high yields while minimising the areas under cultivation. However, N is often applied in excess of crop requirements, resulting in substantial adverse environmental impacts. We conducted a systematic literature review, synthesising the findings from 48 studies to assess the impacts of excessive N application on soil health, and identify sustainable, alternative forms of N management. High N applications lead to soil acidification, N leaching to surface and groundwater, and the emission of greenhouse gases including nitrous oxide (N2O). We identified a range of alternative N management practices, the use of organic fertilisers, a mixture of organic and inorganic fertilisers, controlled release fertilisers, nitrification inhibitors and soil amendments including biochar. While many practices result in reduced N loading or mitigate some adverse impacts, major trade-offs include lower yields, and in some instances increased N2O emissions. Practices are also frequently trialled in isolation, meaning there may be a missed opportunity from assessing synergistic effects. Moreover, adoption rates of alternatives are low due to a lack of knowledge amongst farmers, and/or financial barriers. The use of site-specific management practices which incorporate local factors (for example climate, tea variety, irrigation requirements, site slope, and fertiliser type) are therefore recommended to improve sustainable N management practices in the long term.


2008 ◽  
Vol 29 (4) ◽  
pp. 200-207 ◽  
Author(s):  
Manfred Kayser ◽  
Kirsten Seidel ◽  
Jürgen Müller ◽  
Johannes Isselstein
Keyword(s):  

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 498 ◽  
Author(s):  
Bhakti Prinsi ◽  
Noemi Negrini ◽  
Silvia Morgutti ◽  
Luca Espen

Basil (Ocimum basilicum L.) comprises green and purple cultivars, worldwide cultivated and appreciated for high contents of rosmarinic acid and anthocyanins, respectively. Although nitrogen (N) fertilization is needed for high yields, in basil it could have detrimental effects on the accumulation of phenolic compounds. In this study, plants of the cultivars ‘Italiano Classico’ (green) and ‘Red Rubin’ (purple) were grown in hydroponics and subjected to different nutritional treatments, consisting in N starvation, and nitrate (NO3−) or ammonium (NH4+) nutrition. Plant growth and nutritional status, estimated by the contents of NO3−, NH4+, and amino acids in roots and leaves, were evaluated and put in relation with quality traits of basil leaves, such as chlorophyll content, antioxidant capacity, total phenols, the activity of phenylalanine ammonia-lyase, and the concentrations of individual (poly)phenolic acids and flavonoids. This study reveals that N starvation, as well as the availability of the two inorganic N forms, differently affect the phenolic composition in the two cultivars. Compared to plants grown in NO3− availability, in NH4+ availability, green basil showed a higher content of (poly)phenolic acids, while in purple basil, an increase in the contents of anthocyanins was detected. Overall, the study suggests that the management of NH4+ supply could contribute to enhance crop quality in hydroponics, and provides new knowledge about the relationship between N nutrition and phenolic metabolism in basil.


1996 ◽  
Vol 76 (4) ◽  
pp. 783-789 ◽  
Author(s):  
H. J. Beckie ◽  
S. A. Brandt

The response of sunola (Helianthus annuus L. 'AC Sierra') to nitrogen (N) fertilization under conventional and direct seeding tillage systems was examined in field experiments at sites in the semiarid Dark Brown and subhumid Black soil climatic zones over a 2-yr period of normal to above-normal growing season precipitation. Urea-N fertilizer was banded at the time of seeding at varying rates to a maximum of 150 kg N ha−1. Tillage treatment did not influence sunola response to N fertilization. Sunola seed yield responded greater to fertilization at the Black soil site compared with the Dark Brown soil site in both years. Sunola harvest indices were comparable across sites and years, ranging from 0.10 to 0.18. Seed oil concentration averaged about 4% higher at the Black compared with the Dark Brown soil site, and responded to fertilization differently between locations. Sunola water use efficiency was markedly higher in 1994 than in 1993 at both sites, primarily due to lower water consumption by the crop. Fertilizer recommendations can be based on a desired yield goal or marginal rate of return. A minimum acceptable marginal rate of return of 1, 1.5 and 2 times the cost of the fertilizer, indicated that fertilizer N plus soil nitrate-N levels of greater than 94, 66 and 38 kg N ha−1, respectively, were uneconomical at Scott; respective rates at Melfort were 183, 174 and 154 kg N ha−1. However, fertilizer rates in excess of 100 kg N ha−1 in the Black soil climatic zone can result in potentially high levels of residual nitrate-N in the soil profile, and thus have greater potential for N leaching and denitrification losses. Key words:Helianthus annuus L., nitrogen


2011 ◽  
Vol 68 (2) ◽  
pp. 182-190 ◽  
Author(s):  
Berta Lasa ◽  
Iosu Irañeta ◽  
Julio Muro ◽  
Ignacio Irigoyen ◽  
Pedro María Aparicio Tejo

Nitrate leaching as a result of excessive application of N-fertilizers and water use is a major problem of vulnerable regions. The farming of maize requires high N fertilization and water inputs in Spain. Isotopic techniques may provide information on the processes involved in the N and C cycles in farmed areas. The aim of this work was studying the impact of sprinkler and furrow irrigation and N input on maize (Zea mays L.) yields, and whether isotopic composition can be used as indicator of best farming practices. Trials were set up in Tudela (Spain) with three rates of N fertilization (0, 240 and 320 kg urea-N ha-1) and two irrigation systems (furrow and sprinkler). Yield, nitrogen content, irrigation parameters, N fate and C and N isotope composition were determined. The rate of N fertilization required to obtain the same yield is considerably higher under furrow irrigation, since the crop has less N at its disposal in furrow irrigation as a result of higher loss of nitrogen by NO3--N leaching and denitrification. A lower δ13C in plants under furrow irrigation was recorded.The δ15N value of plant increased with the application rate of N under furrow irrigation.


2021 ◽  
Vol 25 (5) ◽  
pp. 2759-2787
Author(s):  
Rasmus Bødker Madsen ◽  
Hyojin Kim ◽  
Anders Juhl Kallesøe ◽  
Peter B. E. Sandersen ◽  
Troels Norvin Vilhelmsen ◽  
...  

Abstract. Nitrate contamination of subsurface aquifers is an ongoing environmental challenge due to nitrogen (N) leaching from intensive N fertilization and management on agricultural fields. The distribution and fate of nitrate in aquifers are primarily governed by geological, hydrological and geochemical conditions of the subsurface. Therefore, we propose a novel approach to modeling both geology and redox architectures simultaneously in high-resolution 3D (25m×25m×2m) using multiple-point geostatistical (MPS) simulation. Data consist of (1) mainly resistivities of the subsurface mapped with towed transient electromagnetic measurements (tTEM), (2) lithologies from borehole observations, (3) redox conditions from colors reported in borehole observations, and (4) chemistry analyses from water samples. Based on the collected data and supplementary surface geology maps and digital elevation models, the simulation domain was subdivided into geological elements with similar geological traits and depositional histories. The conceptual understandings of the geological and redox architectures of the study system were introduced to the simulation as training images for each geological element. On the basis of these training images and conditioning data, independent realizations were jointly simulated of geology and redox inside each geological element and stitched together into a larger model. The joint simulation of geological and redox architectures, which is one of the strengths of MPS compared to other geostatistical methods, ensures that the two architectures in general show coherent patterns. Despite the inherent subjectivity of interpretations of the training images and geological element boundaries, they enable an easy and intuitive incorporation of qualitative knowledge of geology and geochemistry in quantitative simulations of the subsurface architectures. Altogether, we conclude that our approach effectively simulates the consistent geological and redox architectures of the subsurface that can be used for hydrological modeling with nitrogen (N) transport, which may lead to a better understanding of N fate in the subsurface and to future more targeted regulation of agriculture.


HortScience ◽  
2000 ◽  
Vol 35 (7) ◽  
pp. 1258-1262 ◽  
Author(s):  
Sidat Yaffa ◽  
Bharat P. Singh ◽  
Upendra M. Sainju ◽  
K.C. Reddy

Sustainable practices are needed in vegetable production to maintain yield and to reduce the potential for soil erosion and N leaching. We examined the effects of tillage [no-till (NT), chisel plowing (CP), and moldboard plowing (MP)], cover cropping [hairy vetch (Vicia villosa Roth) vs. winter weeds], N fertilization (0, 90, and 180 kg·ha-1 N), and date of sampling on tomato (Lycopersicon esculentum Mill.) yield, N uptake, and soil inorganic N in a Norfolk sandy loam in Fort Valley, Ga. for 2 years. Yield was greater with CP and MP than with NT in 1996 and was greater with 90 and 180 than with 0 kg·ha-1 N in 1996 and 1997. Similarly, aboveground tomato biomass (dry weight of stems + leaves + fruits) and N uptake were greater with CP and MP than with NT from 40 to 118 days after transplanting (DAT) in 1996; greater with hairy vetch than with winter weeds at 82 DAT in 1997; and greater with 90 or 180 than with 0 kg·ha-1 N at 97 DAT in 1996 and at 82 DAT in 1997. Soil inorganic N was greater with NT or CP than with MP at 0- to 10-cm depth at 0 and 30 DAT in 1996; greater with hairy vetch than with winter weeds at 0- to 10-cm and at 10- to 30-cm at 0 DAT in 1996 and 1997, respectively; and greater with 90 or 180 than with 0 kg·ha-1 N from 30 to 116 DAT in 1996 and 1997. Levels of soil inorganic N and tomato N uptake indicated that N release from cover crop residues was synchronized with N need by tomato, and that N fertilization should be done within 8 weeks of transplanting. Similar tomato yield, biomass, and N uptake with CP vs. MP and with 90 vs. 180 kg·ha-1 N suggests that minimum tillage, such as CP, and 90 kg·ha-1 N can better sustain tomato yield and reduce potentials for soil erosion and N leaching than can conventional tillage, such as MP, and 180 kg·ha-1 N, respectively. Because of increased vegetative cover in the winter, followed by increased mulch and soil N in the summer, hairy vetch can reduce the potential for soil erosion and the amount of N fertilization required for tomato better than can winter weeds.


2007 ◽  
Vol 146 (1) ◽  
pp. 77-84 ◽  
Author(s):  
K. SIELING ◽  
H. KAGE

SUMMARYIn northwest (NW) Europe, oilseed rape (OSR) is often used as a preceding crop for winter wheat. Due to its low N harvest index (HI) and to favourable soil conditions after harvest, large amounts of mineral N remain in the soil, which cannot completely be taken up by the subsequent wheat crop. This increases the risk of N leaching into the groundwater during the following winter. Recently, semi-dwarf genotypes of OSR were developed and made commercially available that show similar yields but reduced height growth compared to conventional genotypes. The present authors hypothesized that the introduction of dwarfing genes leads to an increase in HI for dry matter (DM) and for N of OSR. As a consequence, semi-dwarf genotypes would accumulate less aerial biomass, return fewer plant residues to the soil and need less N to achieve yield maximum compared to conventional hybrids or open pollinating varieties. This may lead to a reduced risk of N leaching after growing OSR. In order to test this hypothesis, field trials conducted in 2003/04–2005/06 near Kiel in NW Germany combined four commercial varieties of OSR (Express, Talent, Trabant and Belcanto as semi-dwarf genotype), two seeding dates (mid-August and beginning of September) and eight mineral N fertilization rates (0–240 kg N/ha). On average in 2003/04–2004/05, the semi-dwarf genotype Belcanto achieved significantly less seed yield (4·44 t/ha) than the other varieties (4·65–4·88 t/ha). However, all varieties tested required similar N fertilization to achieve maximum yield. In addition, N offtake by the seeds did not differ. No interaction between genotype and N treatment was observed. Detailed analysis of DM accumulation and N uptake during the growth period revealed only small differences between the varieties in the averages of all N treatments and both years. At harvest, Belcanto produced more pods/m2 and a slightly higher 1000 seed weight. Nevertheless, HI and N HI were similar for all genotypes. It is concluded that, despite its lower plant height, the semi-dwarf genotype did not provide the opportunity to reduce the risk of N leaching after growing OSR.


Sign in / Sign up

Export Citation Format

Share Document