The potential of semi-dwarf oilseed rape genotypes to reduce the risk of N leaching

2007 ◽  
Vol 146 (1) ◽  
pp. 77-84 ◽  
Author(s):  
K. SIELING ◽  
H. KAGE

SUMMARYIn northwest (NW) Europe, oilseed rape (OSR) is often used as a preceding crop for winter wheat. Due to its low N harvest index (HI) and to favourable soil conditions after harvest, large amounts of mineral N remain in the soil, which cannot completely be taken up by the subsequent wheat crop. This increases the risk of N leaching into the groundwater during the following winter. Recently, semi-dwarf genotypes of OSR were developed and made commercially available that show similar yields but reduced height growth compared to conventional genotypes. The present authors hypothesized that the introduction of dwarfing genes leads to an increase in HI for dry matter (DM) and for N of OSR. As a consequence, semi-dwarf genotypes would accumulate less aerial biomass, return fewer plant residues to the soil and need less N to achieve yield maximum compared to conventional hybrids or open pollinating varieties. This may lead to a reduced risk of N leaching after growing OSR. In order to test this hypothesis, field trials conducted in 2003/04–2005/06 near Kiel in NW Germany combined four commercial varieties of OSR (Express, Talent, Trabant and Belcanto as semi-dwarf genotype), two seeding dates (mid-August and beginning of September) and eight mineral N fertilization rates (0–240 kg N/ha). On average in 2003/04–2004/05, the semi-dwarf genotype Belcanto achieved significantly less seed yield (4·44 t/ha) than the other varieties (4·65–4·88 t/ha). However, all varieties tested required similar N fertilization to achieve maximum yield. In addition, N offtake by the seeds did not differ. No interaction between genotype and N treatment was observed. Detailed analysis of DM accumulation and N uptake during the growth period revealed only small differences between the varieties in the averages of all N treatments and both years. At harvest, Belcanto produced more pods/m2 and a slightly higher 1000 seed weight. Nevertheless, HI and N HI were similar for all genotypes. It is concluded that, despite its lower plant height, the semi-dwarf genotype did not provide the opportunity to reduce the risk of N leaching after growing OSR.

1997 ◽  
Vol 128 (1) ◽  
pp. 79-86 ◽  
Author(s):  
K. SIELING ◽  
O. GÜNTHER-BORSTEL ◽  
H. HANUS

Nitrogen (N) fertilizer not used by the crop can increase the risk of nitrate leaching into the groundwater. In two growing seasons, 1990/91 and 1991/92, the relationships between N fertilization and yield, N uptake by the grain and the N leaching in the subsequent percolation period were investigated in a multifactorial field experiment at Hohenschulen Experimental Station near Kiel in NW Germany. The crop rotation was oilseed rape – winter wheat – winter barley, and effects of soil tillage (minimum tillage without ploughing, conventional tillage), application of pig slurry (none, application in autumn, application in autumn and in spring), mineral N fertilization (none, 80 or 200 kg N ha−1 to oilseed rape and 120 or 240 kg N ha−1 to cereals) and application of fungicides (none, intensive) were all tested. In each year, the rotation and the treatments were located on the same plots. Mineral N fertilization and fungicide application increased yield and N uptake by grain or seed in all crops. In contrast, the application of slurry, especially in autumn, had only small effects on yield and N uptake. Nitrogen losses by leaching (measured using porous ceramic cups) were affected mainly by the year and the crop. In 1992/93, averaged over all factors, 80 kg N ha−1 was leached compared with 28 kg N ha−1 the previous year. Oilseed rape reduced N losses, whereas under winter wheat up to 160 kg N ha−1 was leached. Due to a lower N-use efficiency, autumn applications of slurry increased N leaching, and mineral N fertilization of the preceding crop also led to higher N losses.Since the amount of leached N depends both on the nitrogen left by the preceding crop (unused fertilizer N as well as N in residues) and on N uptake by the subsequent crop, it is not possible to apportion the N losses to any particular crop in the rotation. The cropping sequence, together with its previous and subsequent crops, must also be considered.To minimize leaching, N fertilization must meet the needs of the growing crop. In order to improve the efficiency further, investigations must be conducted in order to understand the dynamics of N in the plant–soil system in conjunction with the weather and crop management practices.


1998 ◽  
Vol 49 (3) ◽  
pp. 437 ◽  
Author(s):  
R. D. Armstrong ◽  
K. McCosker ◽  
G. Millar ◽  
M. E. Probert

The feasibility of using legume leys to redress declining levels of soil nitrogen (N) fertility on the heavy clay Vertisols of the northern Australian grain belt depends partly on the ability of plant residues to supply N directly to subsequent cereal crops. An alternative is the use of fertiliser N in continuous cereal cropping. Two experiments were conducted (one in the field, the other under polyhouse conditions) to compare the uptake of N from either plant residues or ammonium sulfate fertiliser that had been labelled with 15N. In a field trial, 15N-labelled shoots of grain sorghum and Desmanthus virgatus and ammonium sulfate were applied to micro-plots and the flux of the added N between different soil pools and a wheat crop was followed over 219 days. Only small amounts of residue-derived N (<5%) were recovered in the mineral N of the soil at a depth of 0-10 cm, whereas over 88% of the fertiliser N was present as mineral N soon after adding the fertiliser. Soil microbial biomass-N was increased following addition of residues. Recovery of added 15N in the wheat crop was much higher from the fertiliser (35%) than from the 2 residue sources (<5%). The pot trial compared a wider range of 15N-labelled residues (shoot and root residues of Desmanthus virgatus, Lablab purpureus, and sorghum) with several rates of ammonium sulfate, applied in the presence and absence of non-labelled grain sorghum residues, over 4 cropping cycles. Dry matter production and N uptake were increased by application of fertiliser N, although the response was reduced in the presence of non-labelled sorghum residues; responses to residue N were much smaller than those to fertiliser N. In the first crop following residue application <7% of residue N was recovered, increasing to 12-23% over the 4 crops. Recovery of fertiliser N by the crops increased with the rate of application, and also depended on whether it was applied together with residues. A feature of the results, in both the field and pot experiments, was the large proportion of applied 15N that could not be accounted for in either the soil or the crops, and these losses have been attributed to denitrification.


1999 ◽  
Vol 8 (4-5) ◽  
pp. 423-440 ◽  
Author(s):  
L. PIETOLA ◽  
R. TANNI ◽  
P. ELONEN

The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC), fodder barley (etephon/mepiquat) and oilseed rape (etephone) in crop rotation was studied in 1993–1996 on loamy clay soil. Carry over effect of the N fertilization rates (0–180 kg ha-1 ) was evaluated in 1997. N fertilization rate for the best grain/seed yield (120–150 kg ha-1 ) was not affected by PGRs. The seed and N yields of oilseed rape were improved most frequently by recommended use of PGR. The yields of oats were increased in 1995–96. Even though PGR effectively shortened the plant height of spring wheat, the grain yield increased only in 1995. N yield of wheat grains was not increased. Response of fodder barley to PGR was insignificant or even negative in 1995. The data suggest that PGRs may decrease some N leaching at high N rates by improving N uptake by grain/seeds, if the yield is improved. The carryover study showed that in soils with no N fertilization, as well as in soils of high N rates, N uptake was higher than in soils with moderate N fertilization (60–90 kg ha-1 ), independent of PGRs. According to soil mineral N contents, N leaching risk is significant (15–35 kg ha-1 ) only after dry and warm late seasons. After a favourable season of high yields, the N rates did not significantly affect soil mineral N contents. ;


1998 ◽  
Vol 130 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. SIELING ◽  
H. SCHRÖDER ◽  
H. HANUS

In NW Europe, autumn-grown oilseed rape normally receives nitrogen (N) in autumn as seedbed N and in the spring as a split application at the beginning of growth and at stem elongation. In the growing seasons 1990/91 to 1992/93, the effects of slurry and mineral N fertilization on yield, N uptake by the seed and apparent N-use efficiency (NUE) by oilseed rape (Brassica napus) were investigated in a factorial field experiment at Hohenschulen Experimental Station near Kiel, NW Germany. The crop rotation was oilseed rape–winter wheat–winter barley, and soil tillage (conservation tillage without ploughing, conventional tillage), application of pig slurry (none, autumn, spring, autumn+spring) and mineral N fertilization (0 to 200 kg N ha−1) were all varied. Each year, the treatments were applied to all three crops of the rotation and were located on the same plots.Between the years, average seed yield ranged from 3·04 to 3·78 t ha−1, while the corresponding N uptake by the seed varied from 107 to 131 kg N ha−1. Slurry application in spring increased the seed yield and N uptake by the seed in all years, whereas the effect of autumn slurry alone or in combination with spring slurry was negligible. Mineral N fertilizer increased seed yield and N uptake by the seeds except in 1991/92, when N amounts exceeded 160 kg N ha−1. No significant slurry×mineral N interaction occurred. Apparent NUE of mineral N was larger than that of slurry N, but decreased with increasing mineral fertilizer N rates. Only 5% of the autumn slurry N was apparently utilized by the seeds, compared with 24% of the spring slurry N.Despite its ability to take up substantial quantities of N before the winter, oilseed rape utilized very little autumn slurry N for seed production. To minimize environmental impacts, slurry should be applied in the spring, when plants are more able to use N for yield formation, even if NUE of slurry N is lower than that of mineral N. However, since NUE changes with the amount of applied N, it is difficult to find the best combination of slurry and mineral N fertilization to avoid negative environmental effects.


1999 ◽  
Vol 132 (2) ◽  
pp. 127-137 ◽  
Author(s):  
K. SIELING ◽  
O. GÜNTHER-BORSTEL ◽  
T. TEEBKEN ◽  
H. HANUS

Soil sampling in autumn gives important information on the soil N dynamic. In the growing seasons 1991/92 to 1995/96, the effects of different crop management systems on soil mineral N (NO3-N plus NH4-N:Nmin) were investigated in a factorial field experiment at Hohenschulen Experimental Station near Kiel in NW Germany. The crop rotation was oilseed rape – winter wheat – winter barley, and soil tillage (conservation tillage without ploughing, conventional tillage), application of pig slurry (none, autumn, autumn+spring), mineral N fertilization (0, 120 and 240 kg N ha−1) and fungicide application (none, three applications) were all varied. Each year, the treatments occurred in all three crops of the rotation and were located on the same plots. Nmin was determined on four dates (‘After drilling’, ‘End of autumn growth’ before winter, ‘Beginning of spring growth’ before N fertilizer application, and ‘After harvest’) to 90 cm in 30 cm horizons.Under all crops, Nmin showed a large year to year variation. Highest values of 132 kg N ha−1 were observed ‘After drilling’, which decreased until ‘End of growth’. The increase of autumn Nmin (‘After drilling’, ‘End of autumn growth’) was mainly due to autumn slurry, whereas mineral N fertilizer mainly affected Nmin ‘After harvest’. Soil tillage and fungicide application only slightly modified Nmin at all dates.The relationship between N leaching and Nmin measured either ‘After drilling’ or at the ‘End of autumn growth’ in 1991/92–1994/95 remained too poor to be used to estimate N leaching. N net mineralization during autumn and winter varied with crops, as estimated by the Nmin changes between ‘After drilling’ minus ‘Start of spring growth’ plus N uptake by the crop at ‘Start of spring growth’ plus N leaching during winter. On average over the years, 39 kg N ha−1 were mineralized under oilseed rape and 42 kg N ha−1 under wheat compared with 31 kg N ha−1 under barley. However, a large year-to-year variation occurred. In addition, the ranking of the years differed with the crops. Slurry application led to different amounts of mineralized N. Under barley only 25 kg N ha−1 were calculated for the autumn slurry, but 42 kg N ha−1 for the autumn plus spring slurry treatment. In contrast, under oilseed rape the highest value of 41 kg N ha−1 occurred in the autumn slurry plots. Under wheat, slurry application only slightly affected N mineralization. Increased mineral N fertilization decreased N release under oilseed rape, but significantly increased it under cereals. Application of fungicides did not affect N mineralization during winter.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Villar ◽  
M. Aranguren ◽  
A. Castellón ◽  
G. Besga ◽  
A. Aizpurua

Abstract Nitrogen budgets help explain the supply pattern of N from the soil to the crop. Through budgeting, an improvement of the N fertilization strategy can be achieved. The objective of the present study, which was carried out under humid Mediterranean climate conditions, was to assess the influence of N fertilization, temperature and soil humidity on soil N dynamics during a whole oilseed rape growing cycle. A field experiment was conducted with two treatments: without N (0 N) and with application of 180 kg N ha−1(180 N). Mineralization was calculated from N balances made throughout the growing cycle, all while taking into account measured N uptake by oilseed rape and N losses by leaching and N2O emissions. Nitrogen net mineralization was negative after fertilization, reaching –6.73 kg N ha−1, day−1, but total net mineralization over the year was similar for the 0 N and 180 N treatments (21 and 8 kg N ha−1, respectively). Temperatures over 5 °C were sufficient for initiating the mineralization processes. In the summer, when the soil water content was below the wilting point, immobilization took place; however, there is a risk of N leaching if rainfall occurs thereafter, mainly in the 180 N treatment.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1482
Author(s):  
Silvia Pampana ◽  
Alessandro Rossi ◽  
Iduna Arduini

Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year study was conducted to determine how biosolids affect biomass and grain yield as well as N uptake and N leaching in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. var. durum), and oat (Avena byzantina C. Koch). Cereals were fertilized at rates of 5, 10, and 15 Mg ha−1 dry weight (called B5, B10, and B15, respectively) of biosolids (BS). Mineral-fertilized (MF) and unfertilized (C) controls were included. Overall, results highlight that BS are valuable fertilizers for winter cereals as these showed higher yields with BS as compared to control. Nevertheless, whether 5 Mg ha−1 of biosolids could replace mineral fertilization still depended on the particular cereal due to the different yield physiology of the crops. Moreover, nitrate leaching from B5 was comparable to MF, and B15 increased the risk by less than 30 N-NO3 kg ha−1. We therefore concluded that with specific rate settings, biosolid application can sustain yields of winter cereals without significant additional N leaching as compared to MF.


2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


HortScience ◽  
2000 ◽  
Vol 35 (7) ◽  
pp. 1258-1262 ◽  
Author(s):  
Sidat Yaffa ◽  
Bharat P. Singh ◽  
Upendra M. Sainju ◽  
K.C. Reddy

Sustainable practices are needed in vegetable production to maintain yield and to reduce the potential for soil erosion and N leaching. We examined the effects of tillage [no-till (NT), chisel plowing (CP), and moldboard plowing (MP)], cover cropping [hairy vetch (Vicia villosa Roth) vs. winter weeds], N fertilization (0, 90, and 180 kg·ha-1 N), and date of sampling on tomato (Lycopersicon esculentum Mill.) yield, N uptake, and soil inorganic N in a Norfolk sandy loam in Fort Valley, Ga. for 2 years. Yield was greater with CP and MP than with NT in 1996 and was greater with 90 and 180 than with 0 kg·ha-1 N in 1996 and 1997. Similarly, aboveground tomato biomass (dry weight of stems + leaves + fruits) and N uptake were greater with CP and MP than with NT from 40 to 118 days after transplanting (DAT) in 1996; greater with hairy vetch than with winter weeds at 82 DAT in 1997; and greater with 90 or 180 than with 0 kg·ha-1 N at 97 DAT in 1996 and at 82 DAT in 1997. Soil inorganic N was greater with NT or CP than with MP at 0- to 10-cm depth at 0 and 30 DAT in 1996; greater with hairy vetch than with winter weeds at 0- to 10-cm and at 10- to 30-cm at 0 DAT in 1996 and 1997, respectively; and greater with 90 or 180 than with 0 kg·ha-1 N from 30 to 116 DAT in 1996 and 1997. Levels of soil inorganic N and tomato N uptake indicated that N release from cover crop residues was synchronized with N need by tomato, and that N fertilization should be done within 8 weeks of transplanting. Similar tomato yield, biomass, and N uptake with CP vs. MP and with 90 vs. 180 kg·ha-1 N suggests that minimum tillage, such as CP, and 90 kg·ha-1 N can better sustain tomato yield and reduce potentials for soil erosion and N leaching than can conventional tillage, such as MP, and 180 kg·ha-1 N, respectively. Because of increased vegetative cover in the winter, followed by increased mulch and soil N in the summer, hairy vetch can reduce the potential for soil erosion and the amount of N fertilization required for tomato better than can winter weeds.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2354
Author(s):  
Asher Bar-Tal ◽  
Escain Kiwonde ◽  
Beeri Kanner ◽  
Ido Nitsan ◽  
Raneen Shawahna ◽  
...  

The overall aim of this research was to optimize nitrogen (N) fertilization of plants under desalinated water and a wide range of chloride concentrations for high yield while minimizing downward leaching of nitrate and chloride. The response of two crops, lettuce and potato, to N concentration (CN) in the irrigating solution using desalinated and wide range of Cl concentrations (CCL) was evaluated. The yields of both crops increased with N up to optimal CN of the irrigating solution and decreased as CCL increased. Optimal CN in both crops was higher in the desalinated water than high CCL treatments. N uptake by plants increased with CN in the irrigating solution and the highest uptake was at low CCL. As expected, N fertilization suppressed Cl accumulation in plant tissues. Drainage of N and Cl increased with increase in CCL in the irrigating solution and N fertilization above optimal CN resulted in steep rise in downward N leaching. The overall conclusion is that as water quality is improved through desalination, higher N supply is required for high yields with less groundwater pollution by downward leaching of N and Cl.


Sign in / Sign up

Export Citation Format

Share Document