Screening of spinning oils for melt‐spun lignin‐based carbon fiber precursors

2022 ◽  
pp. 52134
Author(s):  
Christina Enengl ◽  
Shaukat Ali Lone ◽  
Christoph Unterweger ◽  
Christian Fürst
Keyword(s):  
2019 ◽  
Vol 9 (24) ◽  
pp. 5361 ◽  
Author(s):  
Panagiotis Goulis ◽  
Ioannis Kartsonakis ◽  
George Konstantopoulos ◽  
Costas Charitidis

In this study, the carbon fiber manufacturing process is investigated, using high-density polyethylene (HDPE) and esterified lignin either with lactic acid (LA) or with poly(lactic acid) (PLA) as precursors. More specifically, lignin was modified using either LA or PLA in order to increase its chemical affinity with HDPE. The modified compounds were continuously melt spun to fibrous materials by blending with HDPE in order to fabricate a carbon fiber precursor. The obtained products were characterized with respect to their morphology, as well as their structure and chemical composition. Moreover, an assessment of both physical and structural transformations after modification of lignin with LA and PLA was performed in order to evaluate the spinning ability of the composite fibers, as well as the thermal processing to carbon fibers. This bottom–up approach seems to be able to provide a viable route considering large scale production in order to transform lignin in value-added product. Tensile tests revealed that the chemical lignin modification allowed an enhancement in its spinning ability due to its compatibility improvement with the commercial low-cost and thermoplastic HDPE polymer. Finally, stabilization and carbonization thermal processing was performed in order to obtain carbon fibers.


2012 ◽  
Vol 193-194 ◽  
pp. 444-447
Author(s):  
Bin Yan ◽  
Ke Qing Han ◽  
Jing Jie Zhang ◽  
Dan Wang ◽  
Su Ping Liu ◽  
...  

In this paper, the evolution of the gas evolved during the heat treatment of the plasticized melt-spun PAN fibers was investigated by TG-FTIR. TG, DTG and G-S (Gram-Schmidt) curves showed that there were two main decomposition stages during the heat treatment of melt-spun PAN fibers. And the results indicated that the main pyrolysis products were NH3 (966 cm-1 and 932 cm-1), HCN (713 cm-1), H2O (3650 cm-1), CH4 (1305cm-1), CO (2180 cm-1), CO2 (2360 cm-1 and 667 cm-1). The release of NH3 and HCN started at the same temperature 220 °C, which were the main products during the stabilization step. Besides, the formation mechanism of the pyrolysis products is presented in detail.


Author(s):  
L. A. Bendersky ◽  
W. J. Boettinger

Rapid solidification produces a wide variety of sub-micron scale microstructure. Generally, the microstructure depends on the imposed melt undercooling and heat extraction rate. The microstructure can vary strongly not only due to processing parameters changes but also during the process itself, as a result of recalescence. Hence, careful examination of different locations in rapidly solidified products should be performed. Additionally, post-solidification solid-state reactions can alter the microstructure.The objective of the present work is to demonstrate the strong microstructural changes in different regions of melt-spun ribbon for three different alloys. The locations of the analyzed structures were near the wheel side (W) and near the center (C) of the ribbons. The TEM specimens were prepared by selective electropolishing or ion milling.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Author(s):  
Hong-Ming Lin ◽  
C. H. Liu ◽  
R. F. Lee

Polyetheretherketone (PEEK) is a crystallizable thermoplastic used as composite matrix materials in application which requires high yield stress, high toughness, long term high temperature service, and resistance to solvent and radiation. There have been several reports on the crystallization behavior of neat PEEK and of CF/PEEK composite. Other reports discussed the effects of crystallization on the mechanical properties of PEEK and CF/PEEK composites. However, these reports were all concerned with the crystallization or melting processes at or close to atmospheric pressure. Thus, the effects of high pressure on the crystallization of CF/PEEK will be examined in this study.The continuous carbon fiber reinforced PEEK (CF/PEEK) laminate composite with 68 wt.% of fibers was obtained from Imperial Chemical Industry (ICI). For the high pressure experiments, HIP was used to keep these samples under 1000, 1500 or 2000 atm. Then the samples were slowly cooled from 420 °C to 60 °C in the cooling rate about 1 - 2 degree per minute to induce high pressure crystallization. After the high pressure treatment, the samples were scanned in regular DSC to study the crystallinity and the melting temperature. Following the regular polishing, etching, and gold coating of the sample surface, the scanning electron microscope (SEM) was used to image the microstructure of the crystals. Also the samples about 25mmx5mmx3mm were prepared for the 3-point bending tests.


2020 ◽  
Vol 8 (32) ◽  
pp. 16661-16668
Author(s):  
Huayao Tu ◽  
Shouzhi Wang ◽  
Hehe Jiang ◽  
Zhenyan Liang ◽  
Dong Shi ◽  
...  

The carbon fiber/metal oxide/metal oxynitride layer sandwich structure is constructed in the electrode to form a mini-plate capacitor. High dielectric constant metal oxides act as dielectric to increase their capacitance.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-279-Pr3-286
Author(s):  
X. Dabou ◽  
P. Samaras ◽  
G. P. Sakellaropoulos

1985 ◽  
Vol 46 (C8) ◽  
pp. C8-533-C8-537
Author(s):  
J. Chevrier ◽  
P. Sainfort ◽  
P. Germi ◽  
D. Pavuna

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-655-C8-656 ◽  
Author(s):  
A. Handstein ◽  
J. Schneider ◽  
U. Heinecke ◽  
R. Grössinger ◽  
H. Sassik

Sign in / Sign up

Export Citation Format

Share Document