Bombyx mori kynurenine 3‐monooxygenase gene editing and insect molecular breeding using the clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 system

2020 ◽  
Vol 36 (6) ◽  
Author(s):  
Jeong Won Hong ◽  
Chan Young Jeong ◽  
Jeong Hee Yu ◽  
Su‐Bae Kim ◽  
Sang Kuk Kang ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Poh Kuan Wong ◽  
Fook Choe Cheah ◽  
Saiful Effendi Syafruddin ◽  
M. Aiman Mohtar ◽  
Norazrina Azmi ◽  
...  

Hereditary or developmental neurological disorders (HNDs or DNDs) affect the quality of life and contribute to the high mortality rates among neonates. Most HNDs are incurable, and the search for new and effective treatments is hampered by challenges peculiar to the human brain, which is guarded by the near-impervious blood-brain barrier. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), a gene-editing tool repurposed from bacterial defense systems against viruses, has been touted by some as a panacea for genetic diseases. CRISPR has expedited the research into HNDs, enabling the generation of in vitro and in vivo models to simulate the changes in human physiology caused by genetic variation. In this review, we describe the basic principles and workings of CRISPR and the modifications that have been made to broaden its applications. Then, we review important CRISPR-based studies that have opened new doors to the treatment of HNDs such as fragile X syndrome and Down syndrome. We also discuss how CRISPR can be used to generate research models to examine the effects of genetic variation and caffeine therapy on the developing brain. Several drawbacks of CRISPR may preclude its use at the clinics, particularly the vulnerability of neuronal cells to the adverse effect of gene editing, and the inefficiency of CRISPR delivery into the brain. In concluding the review, we offer some suggestions for enhancing the gene-editing efficacy of CRISPR and how it may be morphed into safe and effective therapy for HNDs and other brain disorders.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1914
Author(s):  
Meenakshi Rajput ◽  
Khushboo Choudhary ◽  
Manish Kumar ◽  
V. Vivekanand ◽  
Aakash Chawade ◽  
...  

With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops’ genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kaidi Jin ◽  
Baolu Zhang ◽  
Qianqian Jin ◽  
Zhongqiang Cai ◽  
Lei Wei ◽  
...  

The Fujian oyster (Crassostrea angulate) is an important marine bivalve mollusk with high economic value. Gene function research and gene editing techniques have broad application prospects in oyster. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been widely used for genome engineering in many species. CRISPR-mediated gene editing has also been used successfully in the Pacific oyster through direct delivery of the CRISPR/Cas9 components into oyster embryos by microinjection. However, the low throughput and operational difficulties associated with microinjection is one of the factors limiting the widespread application of CRISPR/Cas9 in oysters. In this study, we attempted to deliver the CRISPR/Cas9-system into the embryos of C. angulate by electroporation. An all-in-one CRISPR/Cas9 vector plasmid was used as CRISPR/Cas9 system in this study. Electroporation was carried out using both eggs and blastula larvae. A large number of larvae became malformed or die after electroporation. A single base substitution mutation was detected in the D-larvae developed from electroporated eggs. Our results demonstrate that the CRISPR/Cas9 system can be delivered into embryos of C. angulate for gene editing by electroporation, which provides a reference and will further contribute to the future application of electroporation in mollusks.


2021 ◽  
Vol 22 (17) ◽  
pp. 9554
Author(s):  
Shaoyan Zheng ◽  
Chanjuan Ye ◽  
Jingqin Lu ◽  
Jiamin Liufu ◽  
Lin Lin ◽  
...  

Rice (Oryza sativa L.) is an important food crop species in China. Cultivating high-yielding rice varieties that have a high photosynthetic efficiency is an important goal of rice breeding in China. In recent years, due to the continual innovation of molecular breeding methods, many excellent genes have been applied in rice breeding, which is highly important for increasing rice yields. In this paper, the hexokinase gene OsHXK1 was knocked out via the CRISPR/Cas9 gene-editing method in the indica rice varieties Huanghuazhan, Meixiangzhan, and Wushansimiao, and OsHXK1-CRISPR/Cas9 lines were obtained. According to the results of a phenotypic analysis and agronomic trait statistics, the OsHXK1-CRISPR/Cas9 plants presented increased light saturation points, stomatal conductance, light tolerance, photosynthetic products, and rice yields. Moreover, transcriptome analysis showed that the expression of photosynthesis-related genes significantly increased. Taken together, our results revealed that knocking out OsHXK1 via the CRISPR/Cas9 gene-editing method could effectively lead to the cultivation of high-photosynthetic efficiency and high-yielding rice varieties. They also revealed the important roles of OsHXK1 in the regulation of rice yield and photosynthesis.


2020 ◽  
Vol 42 (12) ◽  
pp. 1369-1380
Author(s):  
Zhabiz Golkar

AbstractCRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is one of the hallmark of biological tools, contemplated as a valid and hopeful alternatives to genome editing. Advancements in CRISPR-based technologies have empowered scientists with an editing kit that allows them to employ their knowledge for deleting, replacing and lately “Gene Surgery”, and provides unique control over genes in broad range of species, and presumably in humans. These fast-growing technologies have high strength and flexibility and are becoming an adaptable tool with implementations that are altering organism’s genome and easily used for chromatin manipulation. In addition to the popularity of CRISPR in genome engineering and modern biology, this major tool authorizes breakthrough discoveries and methodological advancements in science. As scientists are developing new types of experiments, some of the applications are raising questions about what CRISPR can enable. The results of evidence-based research strongly suggest that CRISPR is becoming a practical tool for genome-engineering and to create genetically modified eukaryotes, which is needed to establish guidelines on new regulatory concerns for scientific communities.


2020 ◽  
Author(s):  
Julie J Miller ◽  
Alexandria Fink ◽  
Jack A Banagis ◽  
Hiroaki Nagashima ◽  
Megha Subramanian ◽  
...  

Abstract Background Isocitrate dehydrogenase (IDH)–mutant tumors exhibit an altered metabolic state and are critically dependent upon nicotinamide adenine dinucleotide (NAD+) for cellular survival. NAD+ steady-state levels can be influenced by both biosynthetic and consumptive processes. Here, we investigated activation of sirtuin (SIRT) enzymes, which consume NAD+ as a coenzyme, as a potential mechanism to reduce cellular NAD+ levels in these tumors. Methods The effect of inhibition or activation of sirtuin activity, using (i) small molecules, (ii) clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 gene editing, and (iii) inducible overexpression, was investigated in IDH-mutant tumor lines, including patient-derived IDH-mutant glioma lines. Results We found that Sirt1 activation led to marked augmentation of NAD+ depletion and accentuation of cytotoxicity when combined with inhibition of nicotinamide phosphoribosyltransferase (NAMPT), consistent with the enzymatic activity of SIRT1 as a primary cellular NAD+ consumer in IDH-mutant cells. Activation of Sirt1 through either genetic overexpression or pharmacologic Sirt1-activating compounds (STACs), an existing class of well-tolerated drugs, led to inhibition of IDH1-mutant tumor cell growth. Conclusions Activation of Sirt1 can selectively target IDH-mutant tumors. These findings indicate that relatively nontoxic STACs, administered either alone or in combination with NAMPT inhibition, could alter the growth trajectory of IDH-mutant gliomas while minimizing toxicity associated with cytotoxic chemotherapeutic regimens.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Akbar Hossain ◽  
Milan Skalicky ◽  
Marian Brestic ◽  
Sagar Maitra ◽  
M. Ashraful Alam ◽  
...  

Wheat is one of the world’s most commonly consumed cereal grains. During abiotic stresses, the physiological and biochemical alterations in the cells reduce growth and development of plants that ultimately decrease the yield of wheat. Therefore, novel approaches are needed for sustainable wheat production under the changing climate to ensure food and nutritional security of the ever-increasing population of the world. There are two ways to alleviate the adverse effects of abiotic stresses in sustainable wheat production. These are (i) development of abiotic stress tolerant wheat cultivars by molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas toolkit, and (ii) application of improved agronomic, nano-based agricultural technology, and other climate-smart agricultural technologies. The development of stress-tolerant wheat cultivars by mobilizing global biodiversity and using molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as CRISPR-Cas toolkit is considered the most promising ways for sustainable wheat production in the changing climate in major wheat-growing regions of the world. This comprehensive review updates the adverse effects of major abiotic stresses and discusses the potentials of some novel approaches such as molecular breeding, biotechnology and genetic-engineering, speed breeding, nanotechnology, and improved agronomic practices for sustainable wheat production in the changing climate.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 912
Author(s):  
Huirong Dong ◽  
Yong Huang ◽  
Kejian Wang

The rapid increase in herbicide-resistant weeds creates a huge challenge to global food security because it can reduce crop production, causing considerable losses. Combined with a lack of novel herbicides, cultivating herbicide-resistant crops becomes an effective strategy to control weeds because of reduced crop phytotoxicity, and it expands the herbicidal spectrum. Recently developed clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas)-mediated genome editing techniques enable efficiently targeted modification and hold great potential in creating desired plants with herbicide resistance. In the present review, we briefly summarize the mechanism responsible for herbicide resistance in plants and then discuss the applications of traditional mutagenesis and transgenic breeding in cultivating herbicide-resistant crops. We mainly emphasize the development and use of CRISPR/Cas technology in herbicide-resistant crop improvement. Finally, we discuss the future applications of the CRISPR/Cas system for developing herbicide-resistant crops.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Shuqing Chen ◽  
Chengxiang Hou ◽  
Honglun Bi ◽  
Yueqiang Wang ◽  
Jun Xu ◽  
...  

ABSTRACT We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species.


Sign in / Sign up

Export Citation Format

Share Document