Inhibition of proliferation of small intestinal and bronchopulmonary neuroendocrine cell lines by using peptide analogs targeting receptors

Cancer ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 1404-1414 ◽  
Author(s):  
Mark Kidd ◽  
Andrew V. Schally ◽  
Roswitha Pfragner ◽  
Maximillian V. Malfertheiner ◽  
Irvin M. Modlin
Author(s):  
Andreas Schmidt ◽  
Angela Armento ◽  
Ovidio Bussolati ◽  
Martina Chiu ◽  
Verena Ellerkamp ◽  
...  

Abstract Purpose Glutamine plays an important role in cell viability and growth of various tumors. For the fetal subtype of hepatoblastoma, growth inhibition through glutamine depletion was shown. We studied glutamine depletion in embryonal cell lines of hepatoblastoma carrying different mutations. Since asparagine synthetase was identified as a prognostic factor and potential therapeutic target in adult hepatocellular carcinoma, we investigated the expression of its gene ASNS and of the gene GLUL, encoding for glutamine synthetase, in hepatoblastoma specimens and cell lines and investigated the correlation with overall survival. Methods We correlated GLUL and ASNS expression with overall survival using publicly available microarray and clinical data. We examined GLUL and ASNS expression by RT-qPCR and by Western blot analysis in the embryonal cell lines Huh-6 and HepT1, and in five hepatoblastoma specimens. In the same cell lines, we investigated the effects of glutamine depletion. Hepatoblastoma biopsies were examined for histology and CTNNB1 mutations. Results High GLUL expression was associated with a higher median survival time. Independent of mutations and histology, hepatoblastoma samples showed strong GLUL expression and glutamine synthesis. Glutamine depletion resulted in the inhibition of proliferation and of cell viability in both embryonal hepatoblastoma cell lines. ASNS expression did not correlate with overall survival. Conclusion Growth inhibition resulting from glutamine depletion, as described for the hepatoblastoma fetal subtype, is also detected in established embryonal hepatoblastoma cell lines carrying different mutations. At variance with adult hepatocellular carcinoma, in hepatoblastoma asparagine synthetase has no prognostic significance.


1998 ◽  
Vol 275 (2) ◽  
pp. L311-L321 ◽  
Author(s):  
Kathleen J. Haley ◽  
Kirit Patidar ◽  
Fan Zhang ◽  
Rodica L. Emanuel ◽  
Mary E. Sunday

We studied tumor necrosis factor (TNF)-α as a candidate cytokine to promote neuroendocrine cell differentiation in a nitrosamine-hyperoxia hamster lung injury model. Differential screening identified expression of the genes modulated by TNF-α preceding neuroendocrine cell differentiation. Undifferentiated small cell lung carcinoma (SCLC) cell lines NCI-H82 and NCI-H526 were treated with TNF-α for up to 2 wk. Both cell lines demonstrated rapid induction of gastrin-releasing peptide (GRP) mRNA; H82 cells also expressed aromatic-l-amino acid decarboxylase mRNA within 5 min after TNF-α was added. Nuclear translocation of nuclear factor-κB immunostaining occurred with TNF-α treatment, suggesting nuclear factor-κB involvement in the induction of GRP and/or aromatic-l-amino acid decarboxylase gene expression. We also demonstrated dense core neurosecretory granules and immunostaining for proGRP and neural cell adhesion molecule in H82 cells after 7–14 days of TNF-α treatment. We conclude that TNF-α can induce phenotypic features of neuroendocrine cell differentiation in SCLC cell lines. Similar effects of TNF-α in vivo may contribute to the neuroendocrine cell differentiation/hyperplasia associated with many chronic inflammatory pulmonary diseases.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Khawla S Al-Kuraya ◽  
Abdul K Siraj ◽  
Pratheeshkumar Poyil ◽  
Divya Padmaja ◽  
Sandeep Kumar Parvathareddy ◽  
...  

Abstract Thyroid cancer is the second most common malignancy among females in Saudi Arabia, with Papillary thyroid carcinoma (PTC) accounting for 80-90%. The Kruppel-like factor 5 (Klf5) is a transcription factor that play a critical role in cell transformation, proliferation and oncogenesis. Immunohistochemical analysis of KLF5 was performed in 1219 PTC cases. KLF5 over-expression was noted in 65.1% (793/1219) of PTCs, and was significantly associated with tall-cell variant (p <0.0001), extrathyroidal extension (p = 0.0003), lymph node metastasis (p < 0.0001) and stage IV tumors (p < 0.0001). Significant association was also noted with HIF-1α over-expression (p = 0.0492). Interestingly, KLF5 over-expressing tumors showed poor disease-free survival (p = 0.0066). Functional studies in PTC cell lines showed that KLF5 co-immunoprecipitated with HIF-1α. Knockdown of KLF5 decreased the expression of HIF-1α while KLF5 was not affected by HIF-1α inhibition, suggesting that KLF5 is a functional upstream of HIF-1α. Down-regulation of KLF5 using specific inhibitor, ML264 or siRNA inhibited cell invasion and migration. In addition, treatment of PTC cell lines with ML264 resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner. Furthermore, silencing of KLF5 significantly decreased the self-renewal ability of spheroids generated from PTC cells. Our findings confer that KLF5 may be a potential therapeutic target for the treatment of papillary thyroid cancer.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-9
Author(s):  
Sujan Piya ◽  
Marla Weetall ◽  
Josephine Sheedy ◽  
Balmiki Ray ◽  
Huaxian Ma ◽  
...  

Introduction: Acute myeloid leukemia (AML) is characterized by both aberrant proliferation and differentiation arrest at hematopoietic progenitor stages 1,2. AML relies upon de novo nucleotide synthesis to meet a dynamic metabolic landscape and to provide a sufficient supply of nucleotides and other macromolecules 3,4. Hence, we hypothesized that inhibition of de novo nucleotide synthesis would lead to depletion of the nucleotide pool and pyrimidine starvation in leukemic cells compared to their non-malignant counterparts and impact proliferative and differentiation inhibition pathways. PTC299 is an inhibitor of dihydroorotate dehydrogenase (DHODH), a rate limiting enzyme for de novo pyrimidine nucleotide synthesis that is currently in a clinical trial for the treatment of AML. Aim: We investigated the pre-clinical activity of PTC299 against AML in primary AML blasts and cytarabine-resistant cell lines. To confirm that PTC299 effects are due to inhibition of de novo pyrimidine nucleotide synthesis for leukemic growth, we specifically tested the impact of uridine and orotate rescue. In addition, a comprehensive analysis of alteration of metabolic signaling in PI3K/AKT pathways, apoptotic signatures and DNA damage responses were analyzed by Mass cytometry based proteomic analysis (CyTOF) and immunoblotting. The potential clinical relevance of DHODH inhibition was confirmed in an AML-PDX model. Results: The IC50s for all tested cell lines (at 3 day) and primary blasts (at 5-7 day) were in a very low nanomolar range: OCI-AML3 -4.43 nM, HL60 -59.7 nM and primary samples -18-90 nM. Treatment of AML in cytarabine-resistant cells demonstrated that PTC299 induced apoptosis, differentiation, and reduced proliferation with corresponding increase in Annexin V and CD14 positive cells (Fig.1). PTC299-induced apoptosis and inhibition of proliferation was rescued by uridine and orotate. To gain more mechanistic insights, we used an immunoblotting and mass cytometry (CyTOF) based approach to analyze changes in apoptotic and cell signaling proteins in OCI-AML3 cells. Apoptotic pathways were induced (cleaved PARP, cleaved Caspase-3) and DNA damage responses (TP53, γH2AX) and the PI3/AKT pathway were downregulated in response to PTC299. In isogenic cell lines, p53-wildtype cells were sustained and an increased DNA damage response with corresponding increase in apoptosis in comparison to p53-deficient cells was shown. (Fig.2) In a PDX mouse model of human AML, PTC299 treatment improved survival compared to mice treated with vehicle (median survival 40 days vs. 30 days, P=0.0002) (Fig.3). This corresponded with a reduction in the bone marrow burden of leukemia with increased expression of differentiation markers in mice treated with PTC299 (Fig.3). Conclusion: PTC299 is a novel dihydroorotate dehydrogenase (DHODH) inhibitor that triggers differentiation, apoptosis and/or inhibition of proliferation in AML and is being tested in a clinical trials for the treatment of acute myeloid malignancies. Reference: 1. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017; 129(12): 1577-1585. e-pub ahead of print 2017/02/06; doi: 10.1182/blood-2016-10-696054 2. Quek L, Otto GW, Garnett C, Lhermitte L, Karamitros D, Stoilova B et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. The Journal of experimental medicine 2016; 213(8): 1513-1535. e-pub ahead of print 2016/07/06; doi: 10.1084/jem.20151775 3. Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers (Basel) 2019; 11(5). e-pub ahead of print 2019/05/22; doi: 10.3390/cancers11050688 4. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016; 2(5): e1600200. e-pub ahead of print 2016/07/08; doi: 10.1126/sciadv.1600200 Disclosures Weetall: PTC Therapeutic: Current Employment. Sheedy:PTC therapeutics: Current Employment. Ray:PTC Therapeutics Inc.: Current Employment. Konopleva:Genentech: Consultancy, Research Funding; Rafael Pharmaceutical: Research Funding; Ablynx: Research Funding; Ascentage: Research Funding; Agios: Research Funding; Kisoji: Consultancy; Eli Lilly: Research Funding; AstraZeneca: Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; AbbVie: Consultancy, Research Funding; Calithera: Research Funding; Cellectis: Research Funding; Amgen: Consultancy; Stemline Therapeutics: Consultancy, Research Funding; Forty-Seven: Consultancy, Research Funding; F. Hoffmann La-Roche: Consultancy, Research Funding; Sanofi: Research Funding. Andreeff:Amgen: Research Funding; Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy; Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees. Borthakur:BioLine Rx: Consultancy; BioTherix: Consultancy; Nkarta Therapeutics: Consultancy; Treadwell Therapeutics: Consultancy; Xbiotech USA: Research Funding; Polaris: Research Funding; AstraZeneca: Research Funding; BMS: Research Funding; BioLine Rx: Research Funding; Cyclacel: Research Funding; GSK: Research Funding; Jannsen: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Incyte: Research Funding; PTC Therapeutics: Research Funding; FTC Therapeutics: Consultancy; Curio Science LLC: Consultancy; PTC Therapeutics: Consultancy; Argenx: Consultancy; Oncoceutics: Research Funding.


2021 ◽  
Author(s):  
Kyle A Cottrell ◽  
Luisangely Soto Torres ◽  
Jason D Weber

The RNA editing enzyme ADAR, is an attractive therapeutic target for multiple cancers. Through its deaminase activity, ADAR edits adenosine to inosine in dsRNAs. Loss of ADAR in some cancer cell lines causes activation of the type I interferon pathway and the PKR translational repressor, leading to inhibition of proliferation and stimulation of cell death. As such, inhibition of ADAR function is a viable therapeutic strategy for many cancers. However, there are no FDA approved inhibitors of ADAR. Two small molecules have been previously described as inhibitors of ADAR: 8-azaadenosine and 8-chloroadenosine. Here we show that neither molecule is a selective inhibitor of ADAR. Both 8-azaadenosine and 8-chloroadenosine show similar toxicity to ADAR-dependent and independent cancer cell lines. Furthermore, the toxicity of both small molecules is comparable between cell lines with knockdown of ADAR and cells with unperturbed ADAR expression. Treatment with neither molecule causes activation of PKR. Finally, treatment with either molecule has no effect on A-to-I editing of an ADAR substrate. Together these data show that 8-azaadenosine and 8-chloroadenosine are not suitable small molecules for therapies that require selective inhibition of ADAR, and neither should be used in preclinical studies as ADAR inhibitors.


1993 ◽  
Vol 15 (4) ◽  
pp. 181-184
Author(s):  
Birgitte S. Wulff ◽  
Teit E. Johansen ◽  
Thue W. Schwartz

2019 ◽  
Vol 10 (1) ◽  
pp. 20 ◽  
Author(s):  
Costansia Bureta ◽  
Takao Setoguchi ◽  
Yoshinobu Saitoh ◽  
Hiroyuki Tominaga ◽  
Shingo Maeda ◽  
...  

The activation and proliferation of microglia is characteristic of the early stages of brain pathologies. In this study, we aimed to identify a factor that promotes microglial activation and proliferation and examined the in vitro effects on these processes. We cultured microglial cell lines, EOC 2 and SIM-A9, with various growth factors and evaluated cell proliferation, death, and viability. The results showed that only transforming growth factor beta (TGF-β) caused an increase in the in vitro proliferation of both microglial cell lines. It has been reported that colony-stimulating factor 1 promotes the proliferation of microglia, while TGF-β promotes both proliferation and inhibition of cell death of microglia. However, upon comparing the most effective doses of both (assessed from the proliferation assay), we identified no statistically significant difference between the two factors in terms of cell death; thus, both have a proliferative effect on microglial cells. In addition, a TGF-β receptor 1 inhibitor, galunisertib, caused marked inhibition of proliferation in a dose-dependent manner, indicating that inhibition of TGF-β signalling reduces the proliferation of microglia. Therefore, galunisertib may represent a promising therapeutic agent for the treatment of neurodegenerative diseases via inhibition of nerve injury-induced microglial proliferation, which may result in reduced inflammatory and neuropathic and cancer pain.


2010 ◽  
Vol 207 (3) ◽  
pp. 309-317 ◽  
Author(s):  
M Arvigo ◽  
F Gatto ◽  
M Ruscica ◽  
P Ameri ◽  
E Dozio ◽  
...  

Somatostatin analogues inhibit in vitro cell proliferation via specific membrane receptors (SSTRs). Recent studies on transfected cell lines have shown a ligand-induced formation of receptor dimers. The aim of this study is 1) to evaluate the role of specific ligands in modulating receptor interactions in the androgen-dependent prostate cancer cell line, LNCaP, and in the non-small cell lung cancer line, Calu-6, by co-immunoprecipitation and immunoblot; and 2) to correlate the antiproliferative effect of these compounds with their ability in modulating receptor interactions. In LNCaP, we have demonstrated the constitutive presence of sstr1/sstr2, sstr2/sstr5, sstr5/dopamine (DA) type 2 receptor (D2R), and sstr2/D2R dimers. BIM-23704 (sstr1- and sstr2-preferential compound) increased the co-immunoprecipitation of sstr1/sstr2 and significantly inhibited proliferation (−30.98%). BIM-23244 (sstr2–sstr5 selective agonist) significantly increased the co-immunoprecipitation of sstr2/sstr5, and induced a −41.36% inhibition of proliferation. BIM-23A760, a new somatostatin/DA chimeric agonist with a high affinity for sstr2 and D2R and a moderate affinity for sstr5, significantly increased the sstr5/D2R and sstr2/D2R complexes and was the most powerful in inhibiting proliferation (−42.30%). The chimeric compound was also the most efficient in modulating receptor interaction in Calu-6, increasing the co-immunoprecipitation of D2R/sstr5 and inhibiting cell proliferation (−30.54%). However, behind BIM-23A760, BIM-53097 (D2R-preferential compound) also significantly inhibited Calu-6 proliferation (−17.71%), suggesting a key role for D2R in receptor cross talk and in controlling cell growth. Indeed, activation of monomeric receptors did not affect receptor co-immunoprecipitation, whereas cell proliferation was significantly inhibited when the receptors were synergistically activated. In conclusion, our data show a dynamic ligand-induced somatostatin and DA receptor interaction, which may be crucial for the antiproliferative effects of the new analogues.


Sign in / Sign up

Export Citation Format

Share Document