scholarly journals TGF-β Promotes the Proliferation of Microglia In Vitro

2019 ◽  
Vol 10 (1) ◽  
pp. 20 ◽  
Author(s):  
Costansia Bureta ◽  
Takao Setoguchi ◽  
Yoshinobu Saitoh ◽  
Hiroyuki Tominaga ◽  
Shingo Maeda ◽  
...  

The activation and proliferation of microglia is characteristic of the early stages of brain pathologies. In this study, we aimed to identify a factor that promotes microglial activation and proliferation and examined the in vitro effects on these processes. We cultured microglial cell lines, EOC 2 and SIM-A9, with various growth factors and evaluated cell proliferation, death, and viability. The results showed that only transforming growth factor beta (TGF-β) caused an increase in the in vitro proliferation of both microglial cell lines. It has been reported that colony-stimulating factor 1 promotes the proliferation of microglia, while TGF-β promotes both proliferation and inhibition of cell death of microglia. However, upon comparing the most effective doses of both (assessed from the proliferation assay), we identified no statistically significant difference between the two factors in terms of cell death; thus, both have a proliferative effect on microglial cells. In addition, a TGF-β receptor 1 inhibitor, galunisertib, caused marked inhibition of proliferation in a dose-dependent manner, indicating that inhibition of TGF-β signalling reduces the proliferation of microglia. Therefore, galunisertib may represent a promising therapeutic agent for the treatment of neurodegenerative diseases via inhibition of nerve injury-induced microglial proliferation, which may result in reduced inflammatory and neuropathic and cancer pain.

1993 ◽  
Vol 264 (1) ◽  
pp. L36-L42 ◽  
Author(s):  
E. M. Denholm ◽  
S. M. Rollins

Bleomycin-induced fibrosis in rodents has been used extensively as a model of human pulmonary fibrosis. The influx of monocytes observed during the early stages of fibrosis is at least partially regulated by the elaboration of chemotactic factors in the lung. Exposure of alveolar macrophages (AM phi) to bleomycin either in vivo or in vitro stimulated secretion of monocyte chemotactic activity (MCA). This MCA has been previously characterized as being primarily due to fibronectin fragments. The present experiments revealed that bleomycin also induced AM phi to secrete a second chemotactic factor, transforming growth factor-beta (TGF-beta). However, the TGF-beta secreted by macrophages was in latent form, since no TGF-beta activity was detected unless AM phi conditioned medium (CM) was acid-activated. After acidification, chemotactic activity in CM from AM phi stimulated with bleomycin in vitro was increased by 3.6, whereas activity in AM phi CM from fibrotic rats increased by 2 and that of a bleomycin-stimulated AM phi cell line increased by 1.6. This acid-activatable chemotactic activity was inhibited by antibody to TGF-beta. Bleomycin-stimulated AM phi s secreted significantly more TGF-beta than did unstimulated controls. Further, in vitro exposure of AM phi to bleomycin induced TGF-beta mRNA expression in a time- and concentration-dependent manner, with maximal mRNA being detected following a 16-h incubation with 1 microgram/ml bleomycin.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 260 ◽  
Author(s):  
Qing Zhang ◽  
Xiaonan Hou ◽  
Bradley Evans ◽  
Jamison VanBlaricom ◽  
Saravut Weroha ◽  
...  

Transforming growth factor beta (TGF-β) signaling has pleiotropic functions regulating cancer initiation, development, and metastasis, and also plays important roles in the interaction between stromal and cancer cells, making the pathway a potential therapeutic target. LY2157299 monohydrate (LY), an inhibitor of TGF-β receptor I (TGFBRI), was examined for its ability to inhibit ovarian cancer (OC) growth both in high-grade serous ovarian cancer (HGSOC) cell lines and xenograft models. Immunohistochemistry, qRT-PCR, and Western blot were performed to study the effect of LY treatment on expression of cancer- and fibroblast-derived genes. Results showed that exposure to TGF-β1 induced phosphorylation of SMAD2 and SMAD3 in all tested OC cell lines, but this induction was suppressed by pretreatment with LY. LY alone inhibited the proliferation, migration, and invasion of HGSOC cells in vitro. TGF-β1-induced fibroblast activation was blocked by LY. LY also delayed tumor growth and suppressed ascites formation in vivo. In addition, independent of tumor inhibition, LY reduces ascites formation in vivo. Using OVCAR8 xenograft specimens we confirmed the inhibitory effect of LY on TGF-β signaling and tumor stromal expression of collagen type XI chain 1 (COL11A1) and versican (VCAN). These observations suggest a role for anti-TGF-β signaling-directed therapy in ovarian cancer.


2019 ◽  
Vol 15 (66) ◽  
pp. 483
Author(s):  
SurapaneniKrishna Mohan ◽  
Murad Alsawalha ◽  
AbeerMohammed Al-Subaie ◽  
ReemYousuf Al-Jindan ◽  
SrinivasaRao Bolla ◽  
...  

Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 596-602 ◽  
Author(s):  
JR Keller ◽  
IK Mcniece ◽  
KT Sill ◽  
LR Ellingsworth ◽  
PJ Quesenberry ◽  
...  

Abstract We previously reported that transforming growth factor beta (TGF-beta) selectively inhibits colony-stimulating factor-driven hematopoietic progenitor cell growth. We report here that TGF-beta 1 can act directly on hematopoietic progenitors to inhibit the growth of the most primitive progenitors measurable in vitro. Highly enriched populations of hematopoietic progenitor cells were obtained by isolating lineage negative (Lin-), Thy-1-positive (Thy-1+) fresh bone marrow cells, or by isolating cells from interleukin-3 (IL-3) supplemented bone marrow cultures expressing Thy-1 antigen with the fluorescent activated cell sorter. TGF-beta 1 inhibited IL-3-induced Thy-1 expression on Thy-1- negative (Thy-1-) bone marrow cells in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. In addition, TGF-beta 1 inhibited the formation of multipotent and mixed colonies by isolated Thy-1+ cells, while single lineage granulocyte and macrophage colonies were not affected. The growth of Thy-1+ Lin- cells incubated as single cells in Terasaki plates in medium supplemented with IL-3 were inhibited by TGF-beta, demonstrating a direct inhibitory effect. Hematopoietic stem cells, which have a high proliferative potential (HPP) when responding to combinations of growth factors in vitro, have been detected in the bone marrow of normal mice and mice surviving a single injection of 5- fluorouracil. TGF-beta 1 inhibited the growth of all subpopulations of HPP colony forming cells (CFC) in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. Thus, TGF-beta directly inhibits the growth of the most immature hematopoietic cells measurable in vitro.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 624-630 ◽  
Author(s):  
Y Sonoda ◽  
Y Kuzuyama ◽  
S Tanaka ◽  
S Yokota ◽  
T Maekawa ◽  
...  

Abstract We studied the effects of recombinant human interleukin-4 (rhIL-4) on megakaryocyte colony formation from enriched hematopoietic progenitors. IL-4 strongly inhibited pure and mixed megakaryocyte colony formation in a dose-dependent manner. Formation of erythroid bursts, eosinophil colonies, and erythrocyte-containing mixed colonies was not affected by the addition of IL-4 as reported previously (Sonoda Y, et al; Blood 75:1615, 1990). Delayed addition experiments suggested that IL-4 acts on an early stage of proliferation of megakaryocyte progenitors. Neutralizing antibodies (antisera) prepared against transforming growth factor beta, tumor necrosis factor alpha, interferon alpha (IFN alpha), and IFN gamma did not affect the inhibitory effects of IL-4 on pure and mixed megakaryocyte colony formation. In addition, the inhibitory effects of IL-4 was also seen in serum-free cultures and in cultures containing highly enriched CD34+, HLA-DR+ cells as a target population. These results indicate that IL-4 may function as one of the negative regulators in human megakaryocytopoiesis in vitro.


2006 ◽  
Vol 1 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Magali Cucchiarini ◽  
Jerome Sohier ◽  
Karin Mitosch ◽  
Gunter Kaul ◽  
David Zurakowski ◽  
...  

AbstractArticular cartilage repair might be stimulated by the controlled delivery of therapeutic factors. We tested the hypotheses whether TGF-ß1 can be released from a polymeric scaffold over a prolonged period of time in vitro and whether its transplantation modulates cartilage repair in vivo. Unloaded control or TGF-ß1 poly(ether-ester) copolymeric scaffolds were applied to osteochondral defects in the knee joints of rabbits. In vitro, a cumulative dose of 9 ng TGF-ß1 was released over 4 weeks. In vivo, there were no adverse effects on the synovial membrane. Defects treated with TGF-ß1 scaffolds showed no significant difference in individual parameters of chondrogenesis and in the average cartilage repair score after 3 weeks. There was a trend towards a smaller area (42.5 %) of the repair tissue that stained positive for safranin O in defects receiving TGF-ß1 scaffolds. The data indicate that TGF-ß1 is released from emulsion-coated scaffolds over a prolonged period of time in vitro and that application of these scaffolds does not significantly modulate cartilage repair after 3 weeks in vivo. Future studies need to address the importance of TGF-ß1 dose and release rate to modulate chondrogenesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1562-1562 ◽  
Author(s):  
Noor M Khaskhely ◽  
Daniela Buglio ◽  
Jessica Shafer ◽  
Catherine M. Bollard ◽  
Anas Younes

Abstract Abstract 1562 Poster Board I-585 Purpose SNDX-275 is an oral, class 1 isoform selective HDACi. Phase 1 studies in leukemia demonstrated the agent has a long half-life and that weekly or every other week dosing is sufficient for antitumor activity. Based on recent favorable in vitro and in vivo activity of several HDAC inhibitors in HL, we investigated the in vitro activity of SNDX275 in HL-derived cell lines. Methods For apoptosis and gene expression analysis 05 × 106 cells were incubated with 0.1-2 μM of SNDX-275 for 24-72 hours before they were examined for proliferation and cell death by the MTS assay and the annexin-PI and FACS analysis. For combination studies, cells were incubated with 0.1-2 uM of SNDX-275 and 1-20 nM of either gemcitabine or bortezomib for 48-72 hours. Gene and protein expression were measured by RT-PCR, western blot, and immunohistochemistry. SNDX-275 effects on a panel of 30 cytokines and chemokines was assayed on 05 × 106 cells after incubation of 48 hrs using a multiplex assay. Results SNDX-275 induced cell death in a dose and time dependent manner with an IC50 of 0.4 μM. At the molecular level, SNDX-275 increased H3 acetylation, up-regulated p21 protein expression, and activated the intrinsic apoptosis pathway by down-regulating the anti-apoptotic X-linked inhibitor or apoptosis (XIAP) protein, which was associated with activation of caspase 9 and 3. Combination studies demonstrated that SNDX-275 had synergistic effects when combined with gemcitabine and bortezomib. To further investigate the potential for SNDX-275 activity in HL we measured the effect of SNDX-275 on pathways that may contribute to an anti-tumor immune response. Dysregulated cytokine/chemokine production has been shown to contribute to HL pathology, including immune tolerance of the cancer cells. SNDX-275 increased IL12 p40-70, IP10, and RANTES, and decreased the level of IL13 and IL4, thus favoring Th1-type cytokines/chemokines. In addition, recent data has demonstrated that a variety of epigenetic-modulating drugs may up-regulate the expression of cancer testis tumor associated antigens, leading to a favorable immune response. None of the lines expressed the CTAs without induction. SNDX275 was able to induce CTA expression of SSX2 in L428 but not HDLM2 whereas MAGE-A was induced in both HL cell lines. NY-ESO expression was not induced. Conclusions Our studies demonstrate that SNDS-275 has dual effect on apoptotic and immunomodulatory pathways in HL. Furthermore, this data demonstrates that SNDX-275 may upregulate CTAs suggesting that this treatment may render the tumor more immunogeneic and susceptible to immune mediated killing with tumor-specific cytotoxic T lymphocytes. The selectivity profile of SNDX-275 also suggests that HDAC1 and 2 are the primary targets for HDAC inhibition in these cells. Phase 2 studies with SNDX-275 in HL are ongoing. Disclosures Younes: MethylGene: Honoraria, Research Funding.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14609-e14609
Author(s):  
A. Starodub ◽  
J. Jia ◽  
S. Cushman ◽  
D. Marshall ◽  
H. I. Hurwitz ◽  
...  

e14609 Background: Integrins are commonly upregulated in tumor cells and are important regulators of invasion and metastasis. Integrin signaling is initiated upon engagement of ECM and requires Src as well as various other proteins including ILK, FAK, and paxillin. Methods: Presence of αv integrins on CRC cell lines was established by flow cytometry. CNTO 95 (10μg/ml, a monoclonal anti-αv integrin antibody; Ortho Biotech), and dasatinib (<200nM; BMS, src small molecule inhibitor) were used to study the effects of combined integrin and src inhibition on proliferation and serum-induced migration of colon cancer cell lines in vitro. Downstream signaling changes were assessed by immunoblotting for phosphorylated forms of src, FAK (Y397, Y576/577 and Y925), paxillin, GSK3β and AKT (S473) in HT29, HCT116 and RKO. Results: Proliferation was inhibited by dasatinib in HT29, HCT116, DLD1 and HCT15 in a dose-dependent manner, while RKO and SW48 were resistant. Combining CNTO 95 with dasatinib further inhibited proliferation in all dasatinib-sensitive cells, yet resistant cells were unaffected. Migration was blocked by both CNTO 95 and dasatinib in all cell lines, and combining the two drugs produced augmented effect. Src activation and src- dependent FAK phosphorylation at sites 576 and 925 were blocked by dasatinib; CNTO 95 had little effect alone, but potentiated the effect of dasatinib. Paxillin phosphorylation was modestly blocked by both compounds, but the combination produced significantly augmented inhibition in the three cell lines tested. The phosphorylation status of AKT and GSK-3β, which are downstream of ILK, was inhibited by both drugs as single agents. The combination of dasatinib and CNTO 95 produced further inhibition. Conclusions: Dual inhibition of Src by dasatinib and αv integrins by CNTO 95 produced additive to synergistic inhibition of proliferation in dasatinib sensitive CRC cell lines, and inhibition of migration in all cell lines tested. Decreased phospho-paxillin levels may be responsible for the pronounced inhibition of migration observed after dual treatment with dasatinib and CNTO 95 in these CRC cell lines. These data support the rationale for combined Src/integrin inhibition in colon cancer, and further suggest approaches to patient selection strategies. [Table: see text]


2005 ◽  
Vol 186 (1) ◽  
pp. 109-121 ◽  
Author(s):  
M-O Faure ◽  
L Nicol ◽  
S Fabre ◽  
J Fontaine ◽  
N Mohoric ◽  
...  

Activins and inhibins, members of the transforming growth factor-beta family are able to stimulate and inhibit, respectively, FSH synthesis and release. Other members of this superfamily, the bone morphogenetic proteins (BMPs), may also affect FSH synthesis in the mouse. The aim of this work was to determine whether BMPs are expressed in the ovine pituitary and whether they play a role in the regulation of FSH release. The mRNAs encoding BMP-2, BMP-4, BMP-7 and the oocyte-derived growth factor, growth differentiation factor (GDF)-9 were detected in the pituitaries of cyclic ewes by reverse-transcriptase PCR, as well as the mRNAs encoding the BMP type I receptors, BMPR-IA (activin-receptor-like kinase (ALK)-3) and BMPR-IB (ALK-6), and type II receptors (BMPR-II). Immunolabeling of pituitary sections revealed the presence of BMPR-IA (ALK-3) and BMPR-II in gonadotrope cells. To investigate the potential effects of BMPs on FSH secretion, ewe pituitary cell cultures were treated with BMP-4 (10−11 M to 10−9 M) for 48 h. Interestingly, FSH release was decreased in a dose-dependent manner. At 10−9 M BMP-4 both FSH concentration and FSHβ mRNA expression were reduced by 40% of control values. In contrast, there was no inhibitory effect on either LH or LHβ mRNA expression. A similar result was found with BMP-6. BMP-4 triggered the phosphorylation of Smad1, suggesting that the effect of BMP-4 on FSH secretion is due to the activation of the BMPs signaling pathway. Furthermore, BMP-4 blocked the stimulatory effect of activin on both FSH release and FSHβ mRNA and amplified the suppression of FSH release and FSHβ mRNA levels induced by 17β-estradiol. These results indicate that a functional BMP system operates within the sheep pituitary, at least in vitro, to decrease FSH release and to modulate the effect of activin.


2007 ◽  
Vol 293 (5) ◽  
pp. E1296-E1302 ◽  
Author(s):  
Nisha Antony ◽  
John J. Bass ◽  
Christopher D. McMahon ◽  
Murray D. Mitchell

Myostatin is a member of the transforming growth factor (TGF)-β superfamily, known for its ability to inhibit muscle growth. It can also regulate metabolism and glucose uptake in a number of tissues. To determine the mechanism of myostatin's effect on glucose uptake, we evaluated its actions using choriocarcinoma cell lines that are widely used as models for placental cells. Protein and mRNA were determined using immunoblotting and RT-PCR/PCR, respectively. Glucose uptake was assessed by uptake of radiolabeled deoxyglucose in vitro. All choriocarcinoma cell lines tested i.e., BeWo, JEG, and Jar, are used as models of placental cells, and all expressed myostatin protein and mRNA. Treatment of BeWo cells with myostatin resulted in inhibition of glucose uptake in a concentration-dependent manner ( P < 0.01). At all concentrations tested, follistatin, a functional inhibitor of myostatin, completely blocked the inhibitory effect of myostatin (40 nM) on glucose uptake by BeWo cells (0.4 nM, P < 0.05). Follistatin treatment alone also increased glucose uptake (0.4 and 4 nM, P < 0.001; 40 nM, P < 0.05). Because BeWo cells proliferated and greater cell densities were achieved, glucose uptake declined irrespective of treatment. Myostatin treatment of BeWo cells did not alter the levels of myostatin receptor, ActRII A/B proteins. The levels of glucose transport proteins also remained unaltered in BeWo cells with myostatin treatment. This study has shown that myostatin specifically inhibits glucose uptake into BeWo cells, suggesting that locally produced myostatin may control glucose metabolism within the placenta.


Sign in / Sign up

Export Citation Format

Share Document