Multiparameter Flow Cytometry Assay for Quantification of Immune Cell Subsets, PD‐1 Expression Levels and PD‐1 Receptor Occupancy by Nivolumab and Pembrolizumab

2019 ◽  
Vol 95 (10) ◽  
pp. 1053-1065 ◽  
Author(s):  
Dick Pluim ◽  
Willeke Ros ◽  
Iris H. C. Miedema ◽  
Jos H. Beijnen ◽  
Jan H. M. Schellens
2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoping Hong ◽  
Shuhui Meng ◽  
Donge Tang ◽  
Tingting Wang ◽  
Liping Ding ◽  
...  

ObjectivePrimary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, and its pathogenetic mechanism is far from being understood. In this study, we aimed to explore the cellular and molecular mechanisms that lead to pathogenesis of this disease.MethodsWe applied single-cell RNA sequencing (scRNA-seq) to 57,288 peripheral blood mononuclear cells (PBMCs) from five patients with pSS and five healthy controls. The immune cell subsets and susceptibility genes involved in the pathogenesis of pSS were analyzed. Flow cytometry was preformed to verify the result of scRNA-seq.ResultsWe identified two subpopulations significantly expand in pSS patients. The one highly expressing cytotoxicity genes is named as CD4+ CTLs cytotoxic T lymphocyte, and another highly expressing T cell receptor (TCR) variable gene is named as CD4+ TRAV13-2+ T cell. Flow cytometry results showed the percentages of CD4+ CTLs, which were profiled with CD4+ and GZMB+ staining; the total T cells of 10 patients with pSS were significantly higher than those of 10 healthy controls (P= 0.008). The expression level of IL-1β in macrophages, TCL1A in B cells, as well as interferon (IFN) response genes in most cell subsets was upregulated in the patients with pSS. Susceptibility genes including HLA-DRB5, CTLA4, and AQP3 were highly expressed in patients with pSS.ConclusionsOur data revealed disease-specific immune cell subsets and provided some potential new targets of pSS. Specific expansion of CD4+ CTLs may be involved in the pathogenesis of pSS, which might give valuable insights for therapeutic interventions of pSS.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A10-A10
Author(s):  
Jennifer Tsau ◽  
Brittney Atzmiller ◽  
David Quinn ◽  
Tanya Mulvey ◽  
Sema Kurtulus ◽  
...  

BackgroundNatural Killer (NK) cells have garnered increasing interest as potential cellular therapies or as targets of biotherapeutic agents due to their ability to kill tumor cells in a non-antigen dependent manner. Hence, measurement of NK cell proliferation and/or activation following treatment can serve as a useful biomarker for assessing the efficacy of immunomodulatory therapies.MethodsWe developed a novel 13-parameter flow cytometry panel incorporating cell differentiation (CD) markers important for identification of NK cell subsets (CD56, CD16), their proliferation (Ki-67), activation (CD25, CD335, NKG2D) and inhibition (CD159a) status. Additionally, CD markers that identify other cellular subsets known to be amenable to cytokine modulation (e.g., CD3 and CD14) were included for concurrent monitoring of T cell proliferation and monocyte activation. Method validation focused on analytical sensitivity, specificity and precision as key criteria of assay performance using peripheral blood mononuclear cells (PBMCs) stimulated with NK cell-activating cytokines and resting PBMCs from healthy donors.ResultsThe assay design allowed for robust quantitation of NK cell, T cell and monocyte functionalities. Lower limit of quantification (LLOQ) of target biomarker population was determined to be 1.0% of the parent population, based upon an analysis of 110 key target populations that displayed a co-efficient of variation (CV) of ≤25% and their frequencies ranged from 0.1% to 97.8% of the parent population. Additionally, ≤25% CV was observed in precision assessments, confirming the repeatability and reproducibility of the assay. Clinical trial utility of the assay was verified on cryopreserved PBMCs from patients with a variety of solid tumor malignancies. In these patients, the assay could clearly identify proliferating and activated NK cells, as well as proliferating T cells and activated monocytes, thus demonstrating its suitability for clinical trial applications.ConclusionsWe developed and validated a novel multiparameter flow cytometry assay that allows for simultaneous measurement of proliferation, activation and inhibitory status of key immune cell subsets. Thus, this assay can help shed light on the mode of efficacy of novel therapeutic agents that modulate the immune system, aimed at treatment of cancer and autoimmune diseases.


2020 ◽  
Vol 91 ◽  
pp. 103501
Author(s):  
Vincenzo Fallico ◽  
Mary Rea ◽  
Catherine Stanton ◽  
Niclas Ilestam ◽  
Julie McKinney

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4785-4785
Author(s):  
Varda R. Deutsch ◽  
Sigi Kay ◽  
Marjorie Pick ◽  
Yair Herishanu ◽  
Ori Rogowsky ◽  
...  

Abstract IgVH mutational status and molecular cytogenetics have dramatically improved the ability to predict the prognosis of CLL patients. These tests, however, are highly sophisticated, complex and costly for routine use. ZAP-70, a syk family tyrosine kinase normally expressed in T cells, is a newly described marker which correlates with clinical progression and shorter survival in CLL. A flow cytometry assay to detect ZAP-70 described by Crespo et al (1), appears to be the simplest approach for routine clinical stratification in B-CLL. It is highly informative, and has a strong correlation between the expression of ZAP-70 in CLL cells and clinical outcome. However, in this analysis there are some technical aspects that should be improved to enable it to be standardized as a routine flow cytometry assay. ZAP-70 expression in B-CLL cells is not quantitative but assessed relative to its expression in the T- and NK cells (CD3+, CD56+). This approach can be problematic at times, as ZAP-70 levels in T cells vary in CLL patients as well as in normal controls, probably due to its up regulation following activation. An additional quandary in this assay is that all results are recorded relative to the subjectively delineated T-cell gate. Accordingly, small changes in expression in the T cells can significantly alter the results obtained in some B-CLL samples. In this study we aimed to improve the resolution of the assay by performing a quantitative analysis of ZAP-70 expression within the B-CLL cell population which is uncoupled from T cells. Blood samples were stained by the method described by Crespo et al (1) and ZAP 70 levels in B cell populations in CLL patients (CD19+CD5+) and in healthy volunteers (CD19+) were determined using a standard curve generated by an absolute fluorescent standard of FITC high levels beads with a range of 50–2000 x103 molecules of equivalent soluble fluorochrome (MESF) units per microsphere. Quantitation of expression levels were generated using Quick Cal V2.2 via www.bangslab.com. (Bangs laboratories). Using this analysis system the mean expression levels of ZAP 70 were calculated in healthy B cells (n=11) to be 11,177±1812 MESF units while in CLL (n=36) the mean value was >143,000 MESF units. To determine the reliability of this new method and its clinical relevance we compared our results to data generated using the analysis method of Crespo et al (1). We found a significant correlation between the two methods (r2 = 0.7558). Using ROC curve analysis with maximum sensitivity and specificity, our minimum positive value was found to be 46,700 MESF, with >95% sensitivity at 27,000 MESF and >92% specificity at 67,000 MESF and a Pearson correlation of 0.877 (P<0.0005). We conclude that this assay can provide a more reproducible and reliable analysis of Zap-70 expression in B-CLL, which is easily standardized. This analysis is highly specific as it is quantitative, not subjective and uncoupled from T cell activation in the sample.


1995 ◽  
Vol 15 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Souzana Sabeva Deenitchina ◽  
Takash Ando ◽  
Seiya Okuda ◽  
Naoko Kinukawa ◽  
Hideki Hirakata ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2424
Author(s):  
Marie Burns ◽  
Lennard Ostendorf ◽  
Robert Biesen ◽  
Andreas Grützkau ◽  
Falk Hiepe ◽  
...  

Given its uniformly high expression on plasma cells, CD38 has been considered as a therapeutic target in patients with systemic lupus erythematosus (SLE). Herein, we investigate the distribution of CD38 expression by peripheral blood leukocyte lineages to evaluate the potential therapeutic effect of CD38-targeting antibodies on these immune cell subsets and to delineate the use of CD38 as a biomarker in SLE. We analyzed the expression of CD38 on peripheral blood leukocyte subsets by flow and mass cytometry in two different cohorts, comprising a total of 56 SLE patients. The CD38 expression levels were subsequently correlated across immune cell lineages and subsets, and with clinical and serologic disease parameters of SLE. Compared to healthy controls (HC), CD38 expression levels in SLE were significantly increased on circulating plasmacytoid dendritic cells, CD14++CD16+ monocytes, CD56+ CD16dim natural killer cells, marginal zone-like IgD+CD27+ B cells, and on CD4+ and CD8+ memory T cells. Correlation analyses revealed coordinated CD38 expression between individual innate and memory T cell subsets in SLE but not HC. However, CD38 expression levels were heterogeneous across patients, and no correlation was found between CD38 expression on immune cell subsets and the disease activity index SLEDAI-2K or established serologic and immunological markers of disease activity. In conclusion, we identified widespread changes in CD38 expression on SLE immune cells that highly correlated over different leukocyte subsets within individual patients, but was heterogenous within the population of SLE patients, regardless of disease severity or clinical manifestations. As anti-CD38 treatment is being investigated in SLE, our results may have important implications for the personalized targeting of pathogenic leukocytes by anti-CD38 monoclonal antibodies.


2015 ◽  
Vol 5 (3) ◽  
pp. e1100791 ◽  
Author(s):  
E. Verronèse ◽  
A. Delgado ◽  
J. Valladeau-Guilemond ◽  
G. Garin ◽  
S. Guillemaut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document