Lessons from the wild: slow but increasing long‐term growth allows for maximum longevity in European beech

Ecology ◽  
2019 ◽  
Vol 100 (9) ◽  
Author(s):  
Gianluca Piovesan ◽  
Franco Biondi ◽  
Michele Baliva ◽  
Giuseppe De Vivo ◽  
Vittoria Marchianò ◽  
...  
2011 ◽  
Vol 57 (No. 7) ◽  
pp. 293-302 ◽  
Author(s):  
P. Petráš ◽  
J. Mecko

Correlations of increment indexes with average monthly temperatures and total monthly precipitation were studied on annual ring series of 455 trees of Norway spruce (Picea abies [L.] Karst.), sessile oak (Quercus petrea Liebl.) and European beech (Fagus sylvatica L.). Data on precipitation from the period 1901–2005 and on temperatures from the period 1931–2005 were used. Statistically significant dependences with correlation coefficients in the range of 0.2–0.5 were confirmed. All tree species react positively to precipitation mainly in June and July. An increase in precipitation by 1 mm when compared with the long-term average results in an increase in increment index of spruce almost by 0.13%. This index in oak and beech increases only by a half value of the value for spruce. Precipitation from the second half of the vegetation period of the previous year is also important. Higher temperatures during the vegetation period affect increment changes mostly negatively. With temperature increase by 1°C, when compared with the long-term average, the increment index of trees decreases by about 1–2%.


2014 ◽  
pp. 89-112 ◽  
Author(s):  
Sasa Orlovic ◽  
Milan Drekic ◽  
Bratislav Matovic ◽  
Leopold Poljakovic-Pajnik ◽  
Mirjana Stevanov ◽  
...  

This paper is a review presenting research results on the forest ecosystems of Serbia that are carried out at the Institute of Lowland Forestry and Environment (University of Novi Sad, Serbia) in the context of climate change and globalisation. The review displays results of the long-term monitoring of the forest ecosystems, where the data were obtained at the permanent experimental trials of IPC-Forests (level 2) and the iLTER's network. All findings are systematically divided according to the research disciplines and the most important tree species (poplar, willow, oak, wild cherry and European beech). Also the aspects of social sciences are included (meaning evaluating forest institutions in the first place). This review is meant to contribute inputs to the ongoing discussion about the achievement of the Millenium Goals of Sustainable Development in the context of Serbian forestry.


2020 ◽  
Vol 50 (7) ◽  
pp. 689-703 ◽  
Author(s):  
Hans Pretzsch ◽  
Torben Hilmers ◽  
Peter Biber ◽  
Admir Avdagić ◽  
Franz Binder ◽  
...  

In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.


2014 ◽  
Vol 60 (No. 10) ◽  
pp. 406-416 ◽  
Author(s):  
I. Štefančík ◽  
M. Bošeľa

The issues related to appropriate management methods of beech stands have been considered as a crucial topic from the past up to now. Although the positive effect of tending on wood quality in beech stands is a generally known fact, the results from long-term experiments are very scarce. We investigated the qualitative production of beech forests, treated by different thinning methods during a long-term period of 53 years. For this purpose two long-term (lasting 53 years with a measurement interval of 5 years) series of research plots were used. On each plot three different thinning methods were applied: i) heavy thinning from below (C-grade according to the German forestry research institutes in 1902), ii) free crown thinning (original thinning method developed in Slovak Republic), and iii) control plot (without treatments). As much as 6,316 trees at the beginning of research and 864 trees at the last measurement were assessed and measured. Chi-squared test was used to quantify the effect of different thinning methods on qualitative wood production. The results showed the highest proportion of target trees, as well as the best average quality of the stem and crown on plots where the free crown thinning was applied followed by the plots with heavy thinning from below and control ones. We found that the proportion (expressed out of the total growing stock of crop trees) of veneers was the highest on plots managed by the free crown thinning (30 and 36%) and the lowest on control (unthinned) plots (10 and 19%). It is concluded that no significant differences between the two studied sites were found, which demonstrates a similar effect of the investigated thinning methods at different places across the region of Slovak Republic, but with similar site conditions. On the other hand, the most appropriate and hence successful thinning method was proved to be the free crown thinning, which is also recommended for management of beech forests from the aspect of silvicultural wood quality.  


Holzforschung ◽  
2017 ◽  
Vol 71 (9) ◽  
pp. 689-695 ◽  
Author(s):  
Carmen Fernández-Costas ◽  
Sabrina Palanti ◽  
María Ángeles Sanromán ◽  
Diego Moldes

Abstract Enzymatic grafting of kraft lignin (KL) on wood surfaces is presented as a non-leachable wood protection treatment. Scots pine and European beech mini-blocks were treated with KL solution in the presence of laccase isolated from Myceliophthora thermophila and the formation of a stable interaction between wood and lignin was observed. Furthermore, the same strategy was employed to graft KL with the simultaneous entrapment of copper in the polymeric net formed. Enzymatic treatment diminished the leachability of the compounds in accordance with the EN 84 standard. The durability of the leached wood blocks was evaluated by accelerated decay tests. Samples with grafted lignin on the surface lost their antifungal activity in long-term exposure at the concentration tested. This observation is in contradiction to the preliminary tests, where KL seemed to have some biocidal activity. On the other hand, KL grafting in combination with copper entrapment improved the decay resistance and the copper leaching was reduced.


2022 ◽  
Vol 4 ◽  
Author(s):  
Joachim Zhu ◽  
Anne Thimonier ◽  
Sophia Etzold ◽  
Katrin Meusburger ◽  
Peter Waldner ◽  
...  

Leaf morphological traits (LMTs) of forest trees have been observed to vary across space and species. However, long-term records of LMTs are scarce, due to a lack of measurements and systematic leaf archives. This leaves a large gap in our understanding of the temporal dynamics and drivers of LMT variations, which may help us understand tree acclimation strategies. In our study, we used long-term LMT measurements from foliar material collections of European beech (Fagus sylvatica) and Norway spruce (Picea abies), performed every second year from 1995 to 2019 on the same trees within the Swiss Long-term Forest Ecosystem Research Program LWF. The 11 study plots (6 beech, 4 spruce, and 1 mixed) are distributed along gradients of elevation (485–1,650 m a.s.l.), mean annual precipitation (935–2142 mm), and mean annual temperature (3.2–9.8°C). The investigated LMTs were (i) leaf or needle mass, (ii) leaf area or needle length, and (iii) leaf mass per area or needle mass per length. We combined this unique data set with plot variables and long-term data on potential temporal drivers of LMT variations, including meteorological and tree trait data. We used univariate linear regressions and linear mixed-effects models to identify the main spatial and temporal drivers of LMT variations, respectively. For beech LMTs, our temporal analysis revealed effects of mast year and crown defoliation, and legacy effects of vapor pressure deficit and temperature in summer and autumn of the preceding year, but no clear long-term trend was observed. In contrast, spruce LMTs were mainly driven by current-year spring conditions, and only needle mass per length showed a decreasing long-term trend over the study period. In temporal models, we observed that LMTs of both species were influenced by elevation and foliar nutrient concentrations, and this finding was partly confirmed by our spatial analyses. Our results demonstrate the importance of temporal analysis for determining less recognized drivers and legacy effects that influence LMTs, which are difficult to determine across space and species. The observed differences in the temporal drivers of beech and spruce LMTs suggest differences in the adaptation and acclimation potential of the two species.


2018 ◽  
Author(s):  
Constantin M. Zohner ◽  
Lidong Mo ◽  
Susanne S. Renner

AbstractThe temporal overlap of phenological stages, phenological synchrony, crucially influences ecosystem functioning. For flowering, among-individual synchrony influences gene flow. For leaf-out, it affects interactions with herbivores and competing plants. If individuals differ in their reaction to the ongoing change in global climate, this should affect population-level synchrony. Here, we use climate-manipulation experiments, Pan-European long-term (>15 years) observations, and common garden monitoring data on up to 72 woody and herbaceous species to study the effects of increasing temperatures on the extent of within-population leaf-out and flowering synchrony. Warmer temperatures reduce in situ leaf-out and flowering synchrony by up to 55%, and experiments on European beech provide a mechanism for how individual genetic differences may explain this finding. The rapid loss of reproductive and vegetative synchrony in European plants predicts changes in their gene flow and trophic interactions, but community-wide consequences remain largely unknown.


2020 ◽  
Author(s):  
Jing-Zhong Lu ◽  
Stefan Scheu

AbstractTree - soil interactions depend on environmental context. Plantations of trees may impact soil microorganisms more strongly under unfavorable environmental conditions, compromising long-term ecosystem services. To contextually understand the effects of tree species composition on soil microorganisms, we quantified structural and functional responses of soil microorganisms to forest types across environmental gradients using substrate-induced respiration and phospholipid fatty acid analyses. Five forest types were studied including pure stands of native European beech (Fagus sylvatica), range expanding Norway spruce (Picea abies), and non-native Douglas-fir (Pseudotsuga menziesii), as well as the two conifer - beech mixtures. We found that microbial functioning strongly depends on environmental conditions, in particular on soil nutrients. At nutrient-poor sites, both pure and mixed coniferous forests, but especially Douglas-fir forests, stressed soil microorganisms compared to beech forests. By contrast, microbial structure and functional indicators in beech forests varied little with site conditions, likely because beech provided high amounts of root-derived resources for microbial growth. The results indicate that, at nutrient-poor sites, long-term effects of planting exotic Douglas-fir on ecosystem functioning need further attention, but planting Douglas-fir at nutrient-rich sites may be of little concern from the perspective of microbial communities. Overall, the results point to the importance of root-derived resources in determining the structure and functioning of soil microbial communities, and document the sensitivity of soil microorganisms to planting tree species that may differ in the provisioning of these resources.


Sign in / Sign up

Export Citation Format

Share Document