P-68:Distinquished Student Poster Paper: Dye-Bridged Hybrid Materials for Robust and High-Performance Wavelength Converter of White LEDs

2012 ◽  
Vol 43 (1) ◽  
pp. 1314-1317 ◽  
Author(s):  
Seung-Yeon Kwak ◽  
Na Ree Kim ◽  
Byeong-Soo Bae
Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Giorgia Giovannini ◽  
René M. Rossi ◽  
Luciano F. Boesel

The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.


2021 ◽  
Author(s):  
Qiu-Ling Qiu ◽  
Shi-Xu Yang ◽  
Qian-Shu Wu ◽  
Cheng-Lang Li ◽  
Qi Zhang ◽  
...  

Abstract The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-light-emitting diodes (white LEDs), high electron mobility transistors (HEMTs) and GaN Polarization SuperJunctions. However, the current researches on the polarization mechanism of GaN-based materials are not sufficient. In this paper, we studied the influence of polarization on electric field and energy band characteristics of Ga-face GaN bulk materials by using a combination of theoretical analysis and semiconductor technology computer-aided design (TCAD) simulation. The self-screening effect in Ga-face bulk GaN under ideal and non-ideal conditions is studied respectively. We believe that the formation of high-density two-dimensional electron gas (2DEG) in GaN is the accumulation of screening charges. So that, we also clarify the source and accumulation of the screening charges caused by the GaN self-screening effect in this paper and aim to guide the design and optimization of high-performance GaN-based devices.


2019 ◽  
Vol 805 ◽  
pp. 692-700 ◽  
Author(s):  
Zhenglu Zhu ◽  
Kaikai Bai ◽  
Haibin Zuo ◽  
Enyu Ma ◽  
Zhiqiang Xu ◽  
...  

2017 ◽  
Vol 5 (47) ◽  
pp. 12365-12377 ◽  
Author(s):  
Yongfu Liu ◽  
Jack Silver ◽  
Rong-Jun Xie ◽  
Jiahua Zhang ◽  
Huawei Xu ◽  
...  

The Ba9Lu2Si6O24:Ce3+cyan phosphor has excellent luminescence properties and displays promising application in NUV-based white LEDs with high performance.


2018 ◽  
Vol 5 (12) ◽  
pp. 3126-3134 ◽  
Author(s):  
Chengzhen Wei ◽  
Rui Zhang ◽  
Xuan Zheng ◽  
Qinglong Ru ◽  
Qingyun Chen ◽  
...  

Hierarchical porous NiCo2O4/CeO2 hybrid materials are successfully synthesized via a simple solvothermal method and subsequent heat treatment and exhibit remarkable electrochemical performances in supercapacitors.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2665
Author(s):  
Yihang Li ◽  
Yuzhu Xiong ◽  
Qingpo Zhang

A rivet–inspired method of decorating aramid fiber (AF) with silica particles (SiO2) is proposed to produce SiO2@AF hybrid materials that have largely enhanced interfacial interaction with the rubber matrix. AF was firstly surface-modified with polyacrylic acid (PAA) to obtain PAA–AF, and SiO2 was silanized with 3-aminopropyltriethoxysilane to obtain APES–SiO2. Then, SiO2@AF was prepared by chemically bonding APES–SiO2 onto the surface of PAA–AF in the presence of dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). With the incorporation of SiO2@AF into the rubber matrix, SiO2@AF hybrid materials with high surface roughness can play a role as ‘rivets’ to immobilize large numbers of rubber chains on the surface. The tear strength and tensile strength of rubber composite that filling 4 phr SiO2@AF are dramatically increased by 97.8% and 89.3% compared to pure rubber, respectively. Furthermore, SiO2@AF has superiority in enhancing the cutting resistance of rubber composites, in contrast with unmodified AF and SiO2. SiO2@AF is suitable to be applied as a novel reinforcing filler in rubber composites for high performance.


RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 761-766 ◽  
Author(s):  
Renfu Zhuo ◽  
Shiyong Zuo ◽  
Weiwei Quan ◽  
De Yan ◽  
Baisong Geng ◽  
...  

We report a facile solvothermal method to synthesize hybrid materials SnS/RGO which are promising candidates for potential applications in photodetectors.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1853
Author(s):  
Aleksandra P. Kiseleva ◽  
Grigorii O. Kiselev ◽  
Valeria O. Nikolaeva ◽  
Gulaim Seisenbaeva ◽  
Vadim Kessler ◽  
...  

High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.


NANO ◽  
2019 ◽  
Vol 14 (04) ◽  
pp. 1950049 ◽  
Author(s):  
Jingjing Lin ◽  
Song Yan ◽  
Xiaojie Zhang ◽  
Yueran Liu ◽  
Jun Lian ◽  
...  

Holey Fe-Anderson-type polyoxometalate/polyaniline/graphene (PPG) hybrid materials were first prepared by anchoring Anderson-type polyoxometalates [FeMo6O[Formula: see text]H6][Formula: see text] (FeMo[Formula: see text] onto graphene modified with polyaniline via a facile hydrothermal treatment. The as-prepared materials exhibited an excellent electrochemical performance with a high specific capacitance of 1366 F g[Formula: see text] at 1 A g[Formula: see text] and outstanding cycling stability (97.6% capacitance retention after 5000 cycle times). The uptake of polyaniline/FeMo6 nanoparticles on graphene not only provided the pseudocapacitance but also weakened the aggregation between the graphene layers, resulting in a higher surface area compared with pure graphene. In addition, the AC//PPG-15 asymmetric supercapacitor device showed a high energy density of 24.65[Formula: see text]W h kg[Formula: see text] at a low power density of 326.25[Formula: see text]W kg[Formula: see text] and good cycling stability (94.82% capacitance retention after 5000 cycles). Hence, the as-prepared PPG hybrid materials in this work possess tremendous potential as electrodes for high-performance supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document