scholarly journals Metabolomics in the assessment of chemical-induced reproductive and developmental outcomes using non-invasive biological fluids: application to the study of butylbenzyl phthalate

2009 ◽  
Vol 29 (8) ◽  
pp. 703-714 ◽  
Author(s):  
Susan Sumner ◽  
Rodney Snyder ◽  
Jason Burgess ◽  
Christina Myers ◽  
Rochelle Tyl ◽  
...  
Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 128 ◽  
Author(s):  
Yan Lyu ◽  
Shiyu Gan ◽  
Yu Bao ◽  
Lijie Zhong ◽  
Jianan Xu ◽  
...  

Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenqian Wang ◽  
Chenran Yue ◽  
Sheng Gao ◽  
Shuting Li ◽  
Jianan Zhou ◽  
...  

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous kinds of biological fluids and their specific contents are considered as hallmarks of autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ from those of the healthy controls making them as attractive biomarkers for renal injury. Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs can be functionally transferred by exosomes from donor cells to recipient cells, displaying their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-κB activation and the secretion of inflammatory cytokines. The present Review mainly focuses on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can become non-invasive diagnostic molecules and potential therapeutic strategies for the management of SLE.


2019 ◽  
Vol 9 (3) ◽  
pp. 234-238
Author(s):  
I. F. Gareev ◽  
O. A. Beylerli ◽  
Sh. Zhao ◽  
G. Yang ◽  
J. Sun ◽  
...  

Introduction. Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumour in adults associated with a poor prognosis. Exosomes have been shown to be useful non-invasive biomarkers for the diagnosis and prognosis of tumours, GBM included. Exosomes play a role of biological carriers which can perform various tasks through various signalling pathways of carcinogenesis, such as PI3K/AKT, SOX2, PTEN, ERK and STAT3.Materials and methods. Exosomes were isolated from blood plasma taken from patients diagnosed with GBM prior to surgical resection.Results and discussion. Plasma exosomes from patients with GBM had spherical shape and varied in size from 40 to 100 nm matching the exosomes’ morphological characteristics. The combination of ultrafiltration and double ultracentrifugation makes it possible to extract exosome examples from plasma without the presence of contaminating particles over 100 nm in size; the shape and size of these vesicles match the characteristics of exosomes isolated from other biological fluids.Conclusion. The experimental protocol for the extraction of exosomes from GBM patients’ plasma described here proves effective as a method used to ensure the purity of exosomes. Applying this method offers further opportunities for research into the role of exosomes in GBM pathogenesis. Equally this method can be used in research involving other human pathologies.


2021 ◽  
Vol 19 (3) ◽  
pp. 171-174
Author(s):  
A. V. Mitronin ◽  
O. A. Khvorostenko ◽  
D. A. Ostanina ◽  
Yu. A. Mitronin

The search for new, fast and non-invasive methods of diagnosing diseases of both the oral cavity and general diseases of various etiologies and their introduction into practical health care is still a priority in the field of medicine. Among the known methods of analysis of biological fluids, a special place is occupied by the study of saliva. Oral fluid analysis has a high potential in screening for various diseases, since it contains a wide range of organic and inorganic compounds. A significant number of works have been devoted to the study of the quantitative and qualitative composition of the oral fluid, as well as to the study of saliva biomarkers, however, the study of the saliva proteome is at the stage of data accumulation. The lack of standardization in the collection of samples and methods of analysis, as well as poorly studied physiological and biochemical parameters of the oral fluid, hinders the introduction of advances in the study of the saliva proteome into diagnostic practice. The solution of these problems will allow the oral fluid to be used as a biological environment for both detecting diseases and predicting their course.


Author(s):  
Andrea Vernerová ◽  
Lenka Kujovská Krčmová ◽  
Bohuslav Melichar ◽  
František Švec

AbstractThis review summarizes and critically evaluates the published approaches and recent trends in sample pre-treatment, as well as both separation and non-separation techniques used for the determination of uric acid (UA) in saliva. UA is the final product of purine nucleotide catabolism in humans. UA concentrations in biological fluids such as serum, plasma, and urine represent an important biomarker of diseases including gout, hyperuricemia, or disorders associated with oxidative stress. Previous studies reported correlation between UA concentrations detected in saliva and in the blood. The interest in UA has been increasing during the past 20 years from a single publication in 2000 to 34 papers in 2019 according to MEDLINE search using term “uric acid in saliva”. The evaluation of salivary UA levels can contribute to non-invasive diagnosis of many serious diseases. Increased salivary UA concentration is associated with cancer, HIV, gout, and hypertension. In contrast, low UA levels are associated with Alzheimer disease, progression of multiple sclerosis, and mild cognitive impairment.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 748
Author(s):  
Atul Sharma ◽  
Mihaela Badea ◽  
Swapnil Tiwari ◽  
Jean Louis Marty

With the increasing prevalence of growing population, aging and chronic diseases continuously rising healthcare costs, the healthcare system is undergoing a vital transformation from the traditional hospital-centered system to an individual-centered system. Since the 20th century, wearable sensors are becoming widespread in healthcare and biomedical monitoring systems, empowering continuous measurement of critical biomarkers for monitoring of the diseased condition and health, medical diagnostics and evaluation in biological fluids like saliva, blood, and sweat. Over the past few decades, the developments have been focused on electrochemical and optical biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have evolved gradually with a mix of multiplexed biosensing, microfluidic sampling and transport systems integrated with flexible materials and body attachments for improved wearability and simplicity. These wearables hold promise and are capable of a higher understanding of the correlations between analyte concentrations within the blood or non-invasive biofluids and feedback to the patient, which is significantly important in timely diagnosis, treatment, and control of medical conditions. However, cohort validation studies and performance evaluation of wearable biosensors are needed to underpin their clinical acceptance. In the present review, we discuss the importance, features, types of wearables, challenges and applications of wearable devices for biological fluids for the prevention of diseased conditions and real-time monitoring of human health. Herein, we summarize the various wearable devices that are developed for healthcare monitoring and their future potential has been discussed in detail.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 541 ◽  
Author(s):  
Nour-El-Houda Mourksi ◽  
Chloé Morin ◽  
Tanguy Fenouil ◽  
Jean-Jacques Diaz ◽  
Virginie Marcel

Small nucleolar RNAs (snoRNAs) are non-coding RNAs localized in the nucleolus, where they participate in the cleavage and chemical modification of ribosomal RNAs. Their biogenesis and molecular functions have been extensively studied since their identification in the 1960s. However, their role in cancer has only recently started to emerge. In lung cancer, efforts to profile snoRNA expression have enabled the definition of snoRNA-related signatures, not only in tissues but also in biological fluids, exposing these small RNAs as potential non-invasive biomarkers. Moreover, snoRNAs appear to be essential actors of lung cancer onset and dissemination. They affect diverse cellular functions, from regulation of the cell proliferation/death balance to promotion of cancer cell plasticity. snoRNAs display both oncogenic and tumor suppressive activities that are pivotal in lung cancer tumorigenesis and progression. Altogether, we review how further insight into snoRNAs may improve our understanding of basic lung cancer biology and the development of innovative diagnostic tools and therapies.


2020 ◽  
Vol 9 (6) ◽  
pp. 2609-2618
Author(s):  
Muhammad Farhan Affendi Mohamad Yunos ◽  
Anis Nurashikin Nordin

Diabetes is a growing chronic disease that affect millions of people in the world. Regular monitoring of blood glucose levels in patients is necessary to keep the disease under control. Current methods of blood glucose monitoring devices are typically invasive, causing discomfort to the patients. Non-invasive glucose monitoring devices are a possible game changer for diabetic patients as it reduces discomfort and provides continuous monitoring. This manuscript presents a review of non-invasive glucose biosensors with particular focus on leading technologies available in the market, such as microwave sensing, near-infrared spectroscopy, iontophoresis, and optical methods. This paper intends to describe non-invasive blood glucose monitoring methods using various biological fluids (sweat, saliva, interstitial fluid, urine), highlighting the advantages and drawbacks in latest device development. This review also discusses future trends of glucose detection devices and how it will improve patients’ quality of life.


2021 ◽  
Author(s):  
E Emilie Cardona ◽  
C Cervin Guyomar ◽  
Thomas Desvignes ◽  
J Jérôme Montfort ◽  
Samia Guendouz ◽  
...  

AbstractCirculating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well established biomarkers of many human pathologies. The aim of the present study was to investigate the potential of c-miRNAs as biomarkers of reproductive and metabolic states in fish, a question that has received little attention. Plasma was collected throughout the reproductive cycle from rainbow trout females subjected to two different feeding levels to trigger contrasting metabolic states; ovarian fluid was sample at ovulation. Fluid samples were subjected to small RNA-seq analysis followed by quantitative PCR validation for a subset of promising c-miRNA biomarkers. A comprehensive miRNA repertoire, which was lacking in trout, was first established to allow subsequent analysis. We first showed that biological fluids miRNAomes are complex and encompass a high proportion of the overall species miRNAome. While sharing a high proportion of common miRNAs, plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further showed that the plasma miRNAome exhibited major significant changes depending on metabolic and reproductive state. We subsequently identified three (miR-1-1/2-3p, miR-133-a-1/2-3p and miR-206-3p) evolutionarily conserved muscle-specific miRNA that accumulate in the plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. These highly promising results reveal the high potential of c-miRNAs as physiologically relevant biomarkers and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species.


Sign in / Sign up

Export Citation Format

Share Document